Skip to main content

Kinetics of crystal growth in charged colloidal suspensions

  • Interactions And Long-Range Order
  • Conference paper
  • First Online:
Trends in Colloid and Interface Science IX

Part of the book series: Progress in Colloid & Polymer Science ((PROGCOLLOID,volume 98))

Abstract

We report on the solidification of a metastable colloidal melt of monodisperse, highly charged latex spheres. Light-scattering and video microscopy are used to study the growth velocities of crystals nucleated at the walls of the observation cell and in the bulk melt. The velocity observed for the planar (110) face of the body-centered cubic wall crystals v110 is found to be significantly smaller than the radial growth velocity v R of the homogeneously nucleated crystals of rounded polyhedric shape. Under isothermal conditions the interaction determining suspension parameters packing fraction Φ salt concentration c, and surface charge Z were systematically varied with high accuracy using advanced preparation methods. Growth velocities v 110 in the 〈110〉 direction increase over more than three orders of magnitude with increasing Φ and decreasing c. All data collapse on a single curve if plotted against a reduced energy density Π* between melt and fluid at melting. This master curve shows an initially linear increase and saturates at large Π* with \gu\t8=9.1\gmms-1=9.1 µms−1 as the limiting velocity. It can be excellently fitted with a Wilson-Frenkel growth law yielding a conversion factor of B=6.7 k B T between Π* and the chemical potential difference Δμ between melt and solid. Detailed analysis of the saturation value \gu\t8 provides evidence for two different growth mechanisms operative in the solidification of colloidal crystals

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chen SH, Huang JS, Tartaglia P (1992) Structure and Dynamics of strongly interacting Colloids and Superamolecular Aggregate Kluwer, Doordrecht, NATO-ASI 369:39

    Google Scholar 

  2. Wilson HA (1990) Philos Mag 50:238

    Google Scholar 

  3. Frenkel J (1932) Phys Z Sowjetunion 1:498

    CAS  Google Scholar 

  4. Ackerson BJ, Clark NA (1981) Phys Rev Lett 46:123

    Article  CAS  Google Scholar 

  5. Ackerson BJ (ed.) (1990) Phase Transitions 21:(2–4)

    Google Scholar 

  6. Pusey PN, van Megen W (1989) Nature 320:340

    Article  Google Scholar 

  7. Voegtli LP, Zukoski CF, IV (1991) J Colloid Interface Sci 141:79

    Article  CAS  Google Scholar 

  8. Robbins MO, Kremer K, Grest GS (1988) J Chem Phys 88:3286

    Article  CAS  Google Scholar 

  9. Palberg T, Mönch W, Bitzer F, Leiderer P, Bellini L, Belloni T, Piazza R (1994) Helvetica Physica Acta 67:225

    CAS  Google Scholar 

  10. Sirota EB, Ou-Yang HD, Sinha SK, Chaikin PM, Axe JD, Fujii Y (1989) Phys Rev Lett 62:1524

    Article  CAS  Google Scholar 

  11. Pusey PN in Hansen JP, Levesque D, Zinn-Justin J (eds.) (1989): “Liquids, freezing and glass transition”, 51st summer school in theoretical physics, Les Houches (F) Elsevier Amsterdam 1991, pp 763

    Google Scholar 

  12. Aastuen DJW, Clark NA, Kotter LK (1986) Phys Rev Lett 57:1733

    Article  CAS  Google Scholar 

  13. Aastuen DJW, Clark NA, Swindal JC Muzny CD in[4](, pp 139

    Google Scholar 

  14. Gast AP, Monovoukas Y (1991) Nature 351:352

    Article  Google Scholar 

  15. Dhont JKG, Smits C, Lekkerkerker HNW (1992) J Colloid Interface Sci 152:386

    Article  CAS  Google Scholar 

  16. Grier DA, Murray CA (1994) J Chem Phys 100:9088

    Article  CAS  Google Scholar 

  17. Schätzel K, Ackerson BJ (1993) Phys Rev E 48:3766

    Article  Google Scholar 

  18. Davis KE, Russel WB (1987) Adv Ceram 21:573

    Google Scholar 

  19. Burke E, Broughton JQ, Glimer GH (1988) J Chem Phys 89:1030

    Article  CAS  Google Scholar 

  20. Palberg T, Würth M, Simon R, Leiderer P (1994) Prog Colloid Polym Sci 96:62

    Article  CAS  Google Scholar 

  21. Palberg T, Kottal J, Bitzer F, Simon R, Würth M, Leiderer P (1995) J Colloid Interf Sci 168:85

    Article  Google Scholar 

  22. Bitzer F, Palberg T, Löwen H, Simon R, Leiderer P (1994) Phys Rev E 50:2821

    Article  CAS  Google Scholar 

  23. Palberg T, Härtl W, Wittig U, Versmold H, Würth M, Simnacher E (1992) J Phys Chem 96:8180

    Article  CAS  Google Scholar 

  24. Nieswand M, Majhofer A, Dieterich W (1993) Phys Rev E 48:2521

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. Appell G. Porte

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Dr. Dietrich Steinkopff Verlag GmbH & Co. KG

About this paper

Cite this paper

Palberg, T., Würth, M., Schwarz, J., Leiderer, P. (1995). Kinetics of crystal growth in charged colloidal suspensions. In: Appell, J., Porte, G. (eds) Trends in Colloid and Interface Science IX. Progress in Colloid & Polymer Science, vol 98. Steinkopff. https://doi.org/10.1007/BFb0115198

Download citation

  • DOI: https://doi.org/10.1007/BFb0115198

  • Published:

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-7985-1031-9

  • Online ISBN: 978-3-7985-1667-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics