Analysis of intra- and intermolecular interactions in some oxidases using an analytical ultracentrifuge

  • J. Behlke
  • A. Knespel
  • R. W. Glaser
  • K. P. Pleißner
Conference paper
Part of the Progress in Colloid & Polymer Science book series (PROGCOLLOID, volume 86)


The molecular mass of glutamate oxidase from Streptomyces endus was determined by means of sedimentation equilibrium experiments, sedimentation velocity and diffusion studies using an analytical ultracentrifuge. The values obtained vary between 73000 and 98000 in the concentration range of 0.05–0.65 mg/ml. By fitting the concentration-dependent point molecular masses to different models, the best approximation to the experimental data was obtained assuming a monomer-dimer equilibrium of the enzyme. The monomer molecular mass was estimated to be 57000 ± 1800 and the equilibrium constant amounts, K d = 3.0 · 10−6 M. — Glucose oxidase from Penicillium notatum and horseradish peroxidase in an equimolar mixture at pH 5.5 are able to form a 1:1 complex with an association constant K a = 1.0 · 105 M−1. This behavior can be deduced from sedimentation equilibrium runs. In the presence of (NH4)2SO4 or other lyotropic salts the values of the association constant can increase slightly. This fact should be important for preparing bi- or multienzymes of soluble proteins.

Key words

Analytical ultracentrifugation enzyme d issociation equilibrium constants bienzyme formation lyotropic salts 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cooper A (1976) Proc Natl Acad Sci (USA) 73:2740–2741CrossRefGoogle Scholar
  2. 2.
    van Gunsteren WF, Karplus M (1982) Biochemistry 21:2259–2274CrossRefGoogle Scholar
  3. 3.
    van Gunsteren WF, Berendsen HJC, Hermans J, Hol WGJ, Postma JPM (1983) Proc Natl Acad Sci (USA) 80:4315–4319CrossRefGoogle Scholar
  4. 4.
    Arakawa T, Timasheff SN (1984) Biochemistry 23:5912–5923CrossRefGoogle Scholar
  5. 5.
    Bär J, Huse K, Kopperschläger K, Behlke J, Schulz W (1988) Int J Biol Macromol 10:99–105CrossRefGoogle Scholar
  6. 6.
    Böhmer A, Müller A, Passarge M, Liebs P, Honeck H, Müller HG (1989) Eur J Biochem 182:327–332CrossRefGoogle Scholar
  7. 7.
    Shannon LM, Kay E, Lew JY (1966) J Biol Chemistry 241:2166–2172Google Scholar
  8. 8.
    Welfle K, Büttner W, Behlke J (1990) Studia Biophys 138:245–260Google Scholar
  9. 9.
    Behlke J (1971) Studia Biophys 28:79–84Google Scholar
  10. 10.
    Cohn EJ, Edsall JT (1943) Proteins, amino acids and peptides, Academic Press, New YorkGoogle Scholar
  11. 11.
    Pleißner K-P, Wessel R, Knespel A, Meissner F, Behlke J (1986) Exper Technik Physik 34:139–145Google Scholar
  12. 12.
    Yagi K, Sigiura N, Ohama H, Ohishi N (1973) J Biochem 73:709–714Google Scholar
  13. 13.
    Gaertner FH (1978) Trends in Biochem Soc 5:63–65CrossRefGoogle Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag GmbH & Co. KG 1991

Authors and Affiliations

  • J. Behlke
    • 1
    • 3
  • A. Knespel
    • 1
  • R. W. Glaser
    • 1
    • 2
  • K. P. Pleißner
    • 1
  1. 1.Department of HydrodynamicsCentral Institute of Molecular BiologyBerlin
  2. 2.Division of MedicineHumboldt-UniversityBerlinFRG
  3. 3.Zentralinstitut für MolekularbiologieBerlinFRG

Personalised recommendations