Advertisement

Can sedimentation analysis contribute to the protein folding problem?

  • R. Jaenicke
  • K. Lehle
Conference paper
Part of the Progress in Colloid & Polymer Science book series (PROGCOLLOID, volume 86)

Abstract

Protein folding is a spontaneous reaction commonly modeled by in vitro reconstitution experiments. Ultracentifugal analysis may be applied to characterize the initial, intermediate, and final states in the denaturation-renaturation cycle. With respect to intermediate states, the “molten globule state” and the “A-state” are considered to be of major importance. Using α-lactalbumin, lactate dehydrogenase, γII-crystallin and immunoglobulin as examples, compact intermediates observed at low pH may be analyzed by ultracentrifugation. Correcting for changes in the partial specific volume, and considering aggregation as a side reaction, previous conclusions regarding the increase in hydrodynamic radius of α-lactalbumin at pH 2 are questionable. In the case of lactate dehydrogenase, subunit dissociation and charge effects on the partial specific volume are superimposed in the sedimentation characteristics at low pH. s-values and reactivation kinetics prove that the enzyme in its “A-state” consists of “structured monomers” with significant residual structure. γII-crystallin is exceptional in that it shows long-term stability even at pH 1. Addition of chaotropic agents, e.g., urea leads to sequential unfolding of its two domains. Immunoglobulin at low pH forms an “alternatively folded state” with residual secondary and tertiary structure. Cooperative reversible thermal transitions prove this state to be qualitatively different from the “molten globule”. Ultracentrifugal analysis allows the spectral and calorimetric data to be interpreted in structural terms.

Key words

Protein folding ultracentifugation gamma-crystallin gammaglobulin actate dehydrogenase molten globule 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gierasch L, King J (eds) (1990) Protein folding: Deciphering the second half of the genetic code. American Assoc Advancement of ScienceGoogle Scholar
  2. 2.
    Jaenicke R (1987) Progr Biophys Mol Biol 49:117–237CrossRefGoogle Scholar
  3. 3.
    Jaenicke R (1988) In: Huber R, Winnacker E-L (eds) Protein structure and protein engineering. 39. Colloquium Mosbach. Springer Verlag, Berlin, Heidelberg, New York, pp 16–36Google Scholar
  4. 4.
    Anson ML (1945) Adv Prot Chem 2:361–384Google Scholar
  5. 5.
    Anfinsen CB (1973) Science 181:223–230CrossRefGoogle Scholar
  6. 6.
    Rothman JE (1989) Cell 59:591–601CrossRefGoogle Scholar
  7. 7.
    Ellis RJ (1990) Seminars Cell Biology 1:1–9Google Scholar
  8. 8.
    Fischer G, Schmid FX (1990) Biochemistry 29:2205–2212CrossRefGoogle Scholar
  9. 9.
    Jaenicke R (1991) Biochemistry 30:3147–3161CrossRefGoogle Scholar
  10. 10. a)
    Jaenicke R, Rudolph R (1986) Meth Enzymol 131:218–250Google Scholar
  11. 10. b)
    Jaenicke R, Rudolph R (1989) In: Creighton T (ed) Protein structure: A practical approach. IRL Press, Oxford, New York, pp 191–223Google Scholar
  12. 11.
    Siebendritt R (1989) Dissertation, Universität RegensburgGoogle Scholar
  13. 12.
    Svedberg T, Pedersen KO (1940) Die Ultrazentrifuge, Verlag T. Steinkopff, Dresden, Leipzig, p 32Google Scholar
  14. 13.
    Yphantis DA (1964) Biochemistry 3:297–310CrossRefGoogle Scholar
  15. 14.
    Baldwin RL, van Holde KE (1960) Fortschr Hochpolym Forsch 1:451–511Google Scholar
  16. 15.
    Baldwin RL (1989) Trends Biochem Sci 14:291–294CrossRefGoogle Scholar
  17. 16.
    Zettlmeissl G, Rudolph R, Jaenicke R (1979) Biochemistry 18:5567–5571CrossRefGoogle Scholar
  18. 17.
    Privalov PL (1970) Adv Prot Chem 33:167–241CrossRefGoogle Scholar
  19. 18.
    Gò N (1984) Adv Biophys 18:149–164CrossRefGoogle Scholar
  20. 19.
    Creighton TE (1990) Biochem J 18:149–164Google Scholar
  21. 20.
    Dolgikh DA, Abaturov LV, Bolotina IA, Brashnikov EV, Bychkova VE, Bushnev VN, Gilmanshin RI, Lebedev YO, Semisotnov GV, Tiktopulo EI, Ptitsyn OB (1985) Eur Biophys J 13:103–121CrossRefGoogle Scholar
  22. 21.
    Kuwajima K (1989) Proteins: Struct Funct Genet 6:87–103CrossRefGoogle Scholar
  23. 22.
    Kronman MJ, Holmes LG, Robbins FM (1967) Biochim Biophys Acta 133:46–55Google Scholar
  24. 23.
    Kronman MJ, Andreotti RE (1964) Biochemistry 3:1145–1160CrossRefGoogle Scholar
  25. 24.
    Durchschlag H, Jaenicke R (1982) Biochem Biophys Res Comm 108:1074–1079CrossRefGoogle Scholar
  26. 25.
    Lehle K (1991) Diplomarbeit Universität RegensburgGoogle Scholar
  27. 26.
    Goto Y, Calciano LJ, Fink AL (1990) Proc Natl Acad Sci USA 87:573–577CrossRefGoogle Scholar
  28. 27.
    Goto Y, Takahashi N, Fink AL (1990) Biochemistry 29:3480–3488CrossRefGoogle Scholar
  29. 28.
    Rudolph R, Siebendritt R, Neßlauer G, Sharma AK, Jaenicke R (1990) Proc Natl Acad Sci USA 87:4625–4629CrossRefGoogle Scholar
  30. 29.
    Sharma AK, Minke-Gogl V, Gohl P, Siebendritt R, Jaenicke R, Rudolph R (1990) Eur J Biochem 194:603–609CrossRefGoogle Scholar
  31. 30.
    Holbrook JJ, Liljas A, Steindel SJ, Rossmann MG (1975) In: Boyer PD (ed) The Enzymes 3rd ed, Vol 11. Academic Press, New York, pp 191–292Google Scholar
  32. 31.
    Rudolph R, Jaenicke R (1976) Eur J Biochem 63:409–417CrossRefGoogle Scholar
  33. 32.
    Buchner J, Renner M, Lilie H, Hinz H-J, Janeicke R, Kiefhaber T, Rudolph R (1991) Biochemistry 30:6922–26929CrossRefGoogle Scholar
  34. 33.
    Damaschun G, Damaschun H, Gast K, Gernat C, Zirwer D (1991) Biochim Biophys Acta, in pressGoogle Scholar
  35. 34.
    Damaschun G, Damaschun H, Gast K, Zirwer D, Bychkova VE (1991) Int J Biol Marcomol, in pressGoogle Scholar
  36. 35.
    Ghélis C, Yon J (1982) Protein folding, Academic Press, New York, 562 pGoogle Scholar
  37. 36.
    Wright PE, Dyson H-J, Lerner RA (1988) Biochemistry 27:7167–7175CrossRefGoogle Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag GmbH & Co. KG 1991

Authors and Affiliations

  • R. Jaenicke
    • 1
  • K. Lehle
    • 1
  1. 1.Institut für Biophysik und Physikalische BiochemieUniversität RegensburgRegensburgFRG

Personalised recommendations