Advertisement

Phase transitions in single-crystalline polymerizing diacetylenes as seen by dielectric measurements

  • M. Orczyk
  • J. Sworakowski
Conference paper
Part of the Progress in Colloid & Polymer Science book series (PROGCOLLOID, volume 85)

Abstract

This paper reports on results of measurements of low-frequency electric permittivity of mixed single crystals of solid-state polymerizable diacetylenes pTS and pFBS. The measurements were carried out on monomers and fully polymerized samples over the entire composition range, in the temperature range 80–330 K. The phase transitions in pure pTS and poly-pTS are visible on the ε(T) dependencies, whereas similar dependencies measured in pFBS and poly-pFBS are completely featureless, confirming absence of any phase transitions in that material within the accessible temperatures. In mixed crystals containing increasing amounts of pFBS, the transitions shift towards low temperatures, and their signatures become smeared and less pronounced. Such behavior can be explained by assuming that dipole-dipole interactions are responsible for the phase transitions.

Key words

Polydiacetylene dielectric properties phase transition polymerization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cantow HJ (ed) (1984) Polydiacetylenes. Springer, BerlinGoogle Scholar
  2. 2.
    Bloor D, Chance RR (eds) (1985) Polydiacetylenes: synthesis, structure and electronic properties. Nijhoff, The HagueGoogle Scholar
  3. 3.
    Wegner G (1980) Faraday Disc 68:494–508Google Scholar
  4. 4.
    Wegner G (1971) Makromol Chem 145:85–94CrossRefGoogle Scholar
  5. 5.
    Wegner G (1972) Makromol Chem 154:35–48CrossRefGoogle Scholar
  6. 6.
    Kobelt D, Paulus EF (1974) Acta Cryst B30:232–234Google Scholar
  7. 7.
    Enkelmann V (1977) Acta Cryst B33:2842–2846Google Scholar
  8. 8.
    Aimé JP, Lefebvre J, Bertault M, Schott M, Williams JO (1982) J Phys (Paris) 43:307–322Google Scholar
  9. 9.
    Aimé JP, Schott M, Bertault M, Toupet L (1988) Acta Cryst B44:617–624Google Scholar
  10. 10.
    Enkelmann V, Wegner G (1977) Makromol Chem 178:635–638CrossRefGoogle Scholar
  11. 11.
    Robin P, Pouget JP, Comes R, Moradpour A (1980) J Phys (Paris) 41:415–421Google Scholar
  12. 12.
    Bertault M, Collet A, Schott M, J Phys (Paris) Lettres 42:L131–L133Google Scholar
  13. 13.
    Nowak R, Sworakowski J, Kuchta B, Bertault M, Schott M, Jakubas R, Kołodziej HA (1986) Chem Phys 104:467–476CrossRefGoogle Scholar
  14. 14.
    Orczyk M (1990) Chem Phys 142:485–493CrossRefGoogle Scholar
  15. 15.
    Chance RR, Yee KC, Baughman RH, Eckhardt H, Eckhardt CJ (1980) J Polym Sci Polym Phys Ed 18:1651–1661CrossRefGoogle Scholar
  16. 16.
    Orczyk M, Sworakowski J, Bertault M, Faria RM (1990) Synth Metals 35:77–81CrossRefGoogle Scholar
  17. 17.
    Bertault M, Schott M, Brienne M, Collet A (1984) Chem Phys 85:481–490CrossRefGoogle Scholar
  18. 18.
    Orczyk M, Pater E, Sworakowski J (1991) Makromol Chem, in pressGoogle Scholar
  19. 19.
    Bloor D, Koski L, Stevens GC, Preston FH, Lando DJ (1975) J Mater Sci 10:1678–1688CrossRefGoogle Scholar
  20. 20.
    Baughman RH (1978) J Chem Phys 68:3110–3121CrossRefGoogle Scholar
  21. 21.
    Eucken A (ed) (1951) Landolt-Börnstein Zahlenwerte und Funktionen. Springer, Berlin, 6th Ed, Vol 1, Pt III, p 446Google Scholar
  22. 22.
    Minkin VI, Osipov OA, Zhdanov YA (1968) Dipolyne momenty v organicheskoi khimiyi. Izd Nauka, Leningrad, Ch 3Google Scholar
  23. 23.
    Orczyk M (1990) Thesis, Technical University of WrocławGoogle Scholar
  24. 24.
    Orczyk M, Sworakowski J, to be publishedGoogle Scholar
  25. 25.
    Terauchi H, Ueda T, Hatta I (1981) J Phys Soc Japan 50:3472–3475CrossRefGoogle Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag GmbH & Co. KG 1991

Authors and Affiliations

  • M. Orczyk
    • 1
  • J. Sworakowski
    • 1
  1. 1.Institute of Organic and Physical ChemistryTechnical University of WrocławWrocławPoland

Personalised recommendations