Dielectric and thermald relaxations in low molecular mass liquid crystals

  • C. Schick
  • B. Stoll
  • J. Schawe
  • A. Roger
  • M. Gnoth
Conference paper
Part of the Progress in Colloid & Polymer Science book series (PROGCOLLOID, volume 85)


The investigation of amorphous layers between crystalline lamellae allows the estimation of glass trasition length scales. Low molecular mass liquid crystals can form semicrystalline structures without extensive interfacial layers between crystalline and liquid regions like in polymers. First results from dielectric spectroscopy and calorimetry are presented. The semicrystalline sample shows a, complicated relaxation behavior without a typical glass transition. A thermally activated local process is observed (f 0=1020 Hz; E A=118 kJ/mol). It may be a residuum of the glass transition. Further investigations are necessary to get detailed information about structure d and relaxation behavior of these interesting materials.

Key Words

Liquid crystal thermal behavior dielectric relaxation activation parameters glass transition spatial limitations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tammann G (1933) Der Glaszustand. Leopold Voss, LeipzigGoogle Scholar
  2. 2.
    Angell CA, Sare JM (1978) J Phys Chem 82:2622CrossRefGoogle Scholar
  3. 3.
    Moynihan CT, Sasabe H, Tucker J (1976) Proc Int Symp Molten Salts (Ed by IP Pemster et al.), Elektrochem Soc PrincetownGoogle Scholar
  4. 4.
    Shen MC, Eisenberg A (1970) Rubber Chem Technol 43:95, 156Google Scholar
  5. 5.
    Suga H, Seki S (1980) Faraday Discuss 69:221CrossRefGoogle Scholar
  6. 6.
    Donth E (1982) J Non Cryst Solids 53:325CrossRefGoogle Scholar
  7. 7.
    Pechhold WR, Stoll B (1982) Polym Bull 7:413Google Scholar
  8. 8.
    Owen AJ, Bonart R (1985) Polymer 26:1034CrossRefGoogle Scholar
  9. 9.
    Strom U, Tailor PC (1977) Phys Rev B16:5512Google Scholar
  10. 10.
    schick C, Donth E (1991) Physica ScriptaGoogle Scholar
  11. 11.
    Schick C, Fabry F, Schnell U, Stoll G, Deutschbein L, Mischok W (1988) Acta Polymerica 39:705CrossRefGoogle Scholar
  12. 12.
    Schick C, Wigger J, Mischok W (1990) Acta Polymerica 41:137CrossRefGoogle Scholar
  13. 13.
    Dehne H, Roger A, Demus D, Diele S, Kresse H, Pelzl G, Wedler W, Weissflog W (1989) Liquid Crysts 6:47CrossRefGoogle Scholar
  14. 14.
    Baumeister U, Hartung H, Roger A, Dehne H (1991) Mole c Crystals Liq Crystals (to be published)Google Scholar
  15. 15.
    Cheng SZD,Wunderlich B (1987) Macromolecules 20:1630CrossRefGoogle Scholar
  16. 16.
    Stoll B (1975) Archiv techn Messen 474:129; Heinrich W (1987) Thesis UlmGoogle Scholar
  17. 17.
    Binder B (1989) Thesis UlmGoogle Scholar
  18. 18.
    Yalof SA, Hedvig P (1976) Thermochemica Acta 17:301CrossRefGoogle Scholar
  19. 19.
    Heinrich W, Stoll B (1988) Progr Colloid Polym Sci 78:37CrossRefGoogle Scholar
  20. 20.
    Meischner C, Greiner B Hauptmann P, Donth E (1986) Acta Polymerica 37:453CrossRefGoogle Scholar
  21. 21.
    Pechhold W (1980) Colloid Polym Sci 258:269CrossRefGoogle Scholar
  22. 22.
    Schneider K, Schönhals A, Donth E (1981) Acta Polymerica 32:471CrossRefGoogle Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag GmbH & Co. KG 1991

Authors and Affiliations

  • C. Schick
    • 2
  • B. Stoll
    • 1
  • J. Schawe
    • 2
  • A. Roger
    • 2
  • M. Gnoth
    • 1
  1. 1.Abteilung Angewandte PhysikUniversität UlmFRG
  2. 2.Hochschule GüstrowInstitut f└ PhysikGüstrowFRG

Personalised recommendations