Advertisement

Defect morphology in preoriented systems with constrained perturbations

  • F. Plümer
Conference paper
Part of the Progress in Colloid & Polymer Science book series (PROGCOLLOID, volume 85)

Abstract

A computer simulation model has been extended to discuss a special crystallization event in thin oriented polymer films, subjected to a current shearing at simultaneous quenching. Supposing in the model at first an isotrope defect distribution in a highly extensional strained system, the development of this distribution as a result of a spinodal decomposition process has been computed. Especially the assumption of a shift of chains against each other in the direction of orientation affecting the process of defect migration and collection has been included in the model. The computed time-dependent structure factor S(k,t) seems to be able to indicate influences of chain movements at the development of the defect morphology. By that it should be possible to state introducing as perturbation a chain shift the defect collection will be strong affected. This is compared to a sudden rupture of the formation of fibrillar structures changing slightly the preparation conditions.

Key words

Defect morphology orientation polymer films spinodal decomposition Monte-Carlo simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Petermann J, Gohil RM (1979) J Mater Sci 14:2260–2264CrossRefGoogle Scholar
  2. 2.
    Zachariades AE (1984) J Appl Polym Sci 29:867–875CrossRefGoogle Scholar
  3. 3.
    Plümer F (1987) In: Abstr VI, 31. IUPAC-Symp Macro 1987 Merseburg, p 27 Kramer M (1987) Diplomarbeit, Leipzig, unpublishedGoogle Scholar
  4. 4.
    Melior JP, Hirte R (1987) In: Abstr IV, 31. IUPAC-Symp Macro 1987 Merseburg, p 162Google Scholar
  5. 5.
    Meakin P, Scalapino DJ (1985) J Polym Sci Phys Ed 23:179–189CrossRefGoogle Scholar
  6. 6.
    Fischer EW, Stamm M, Fan G, Zietz R (1989) Am Chem Soc: Polym Preprints 30/2:291–292Google Scholar
  7. 6a.
    Baumgärtner A, Heermann DW (1986) Polymer 27:1777–1780CrossRefGoogle Scholar
  8. 7.
    Binder K (1979) Monte Carlo Methods in Statistical Physics, Springer, New YorkGoogle Scholar
  9. 7a.
    Binder K (1983) J Chem Phys 79:6387–6407CrossRefGoogle Scholar
  10. 7b.
    Pistoor N, Binder K (1988) Colloid Polym Sci 266:132–140CrossRefGoogle Scholar
  11. 8.
    Bortz AB, Kalos MH, Lebowitz JL, Zendejas MA (1974) Phys Rev B 10:535–541CrossRefGoogle Scholar
  12. 8a.
    Marro J, Bortz AB, Kalos MH, Lebowitz JL (1975) Phys Rev B 12:2000–2011CrossRefGoogle Scholar
  13. 9.
    Onsager L (1944) Phys Rev 65:117CrossRefGoogle Scholar
  14. 9a.
    Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) J Chem Phys 21:1087–1092CrossRefGoogle Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag GmbH & Co. KG 1991

Authors and Affiliations

  • F. Plümer
    • 2
    • 1
  1. 1.Department of Polymer Physics, Institute of PhysicsUniversity of LeipzigFRG
  2. 2.Sektion Physik, WB PolymerphysikUniversität LeipzigLeipzigFRG

Personalised recommendations