Advertisement

Solid state NMR investigations of polyamide 11 films

  • P. Holstein
  • J. Spěvácěck
  • D. Geschke
  • V. Thiele
Conference paper
Part of the Progress in Colloid & Polymer Science book series (PROGCOLLOID, volume 85)

Abstract

In this paper, solid-state NMR investigations of polyamide 11 (PA 11) films are presented. This polymer is semicrystalline and can exist in various crystalline polymorphs. Polymaide 11 shows interesting electric properties. The piezo- and pyroelectric effects of this polar polymer are comparable with those of polyvinylidenfluoride (PVDF). Multiple pulse 1H-NMR and 13C CP/MAS NMR measurements are used to investigate the influence of the preparation conditions (thermal, mechanical, electric effects) on the morphology of PA 11. Various preparation procedures provde film material with predominantly a — and γ crystallites, respectively. The 13C NMR spectra and IR measurements support the assumption of the co-esistence of various crystalline polymorphs. The chemical shift patterns are different for the various crystalline modifications. Separated 13C NMR spectra are recorded for the crystalline and amorphous parts of the films. Orientation effects due to the mechanical strechting and the poling in electric fields are reflected in the results of the 1H NMR multiple pulse investigations.

Key words

Polyamide 11 (PA 11) solid-state 1H NMR 13C CP/MAS NMR electric poling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gerhardt-Multhaupt R, Gross B, Sessler GM (1987) In: Sessler GM (ed) Electrets. Springer pp 383–431Google Scholar
  2. 2.
    Douglass DC, McBrierty VJ, Wang TT (1982) J Chem Phys 77:5826–5835CrossRefGoogle Scholar
  3. 3.
    Geschke D, Holstein P (1989) Progr Colloid & Polymer Sci 80:71–77CrossRefGoogle Scholar
  4. 4.
    Geschke D, Holstein P (1990) Makromol Chem Macromol Symp (1990) 34:205–211Google Scholar
  5. 5.
    Jo YS, Muramaya J, Inoue Y, Chujo R, Tasaka S, Miyata S (1988) J Polym Sci Phys Ed 26:463–466CrossRefGoogle Scholar
  6. 6.
    Wu G, Yano O, Soen T (1986) Polymer J 18:51–61CrossRefGoogle Scholar
  7. 7.
    Scheinbaum JI, Mathur SC, Newman BA (1986) J Polym Sci: Part B: Polym Phys 24:1791–1803CrossRefGoogle Scholar
  8. 8.
    Newman BA, Sham TP, Pae KD (1977) J Appl Phys 48:4092–4098CrossRefGoogle Scholar
  9. 9.
    Thiele V, Geschke D (1990) Acta Polymerica 41:550–551CrossRefGoogle Scholar
  10. 10.
    Mansfield P, Ware D (1966) Phys Lett 23:412–422Google Scholar
  11. 11.
    Hummel D, Scholl F IR Atlas of Polymers, Interscience, New York 1969 Vol 1, Part 2Google Scholar
  12. 12.
    Ketels H, Schellekens R, Beulen J, Van Der Velden G (1988) Polymer Commun 29:189Google Scholar
  13. 13.
    Ketels H, Van de Wen L, Aerdts A, Van der Velden G (1989) Polym Commun 30:80–83Google Scholar
  14. 14.
    Kubo K, Yamanobe T, Komoto T, Ando i, Shiibashi T (1989) J Polym Sci: Part B: Polym PHys 27:929–937CrossRefGoogle Scholar
  15. 15.
    Torchia DA (1978) J Magn Res 30:613Google Scholar
  16. 16.
    Mathias LJ, Powell DG, Autran JP, Porter RS (1990) Macromolecules 23:963–967CrossRefGoogle Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag GmbH & Co. KG 1991

Authors and Affiliations

  • P. Holstein
    • 1
    • 3
  • J. Spěvácěck
    • 1
    • 2
  • D. Geschke
    • 1
  • V. Thiele
    • 1
  1. 1.Department of PhysicsUniversity of LeipzigGermany
  2. 2.Institute of Macromolecular Chemistry of the Czechoslovak Academy of SciencePrague
  3. 3.Universität Leipzig Sektion PHysikLeipzigFRG

Personalised recommendations