Skip to main content

An inverse LQ based approach to the design of robust tracking system with quadratic stability

  • Conference paper
  • First Online:
Book cover Robust Control

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 183))

  • 288 Accesses

Abstract

A tracking problem for linear uncertain systems is considered. A robust feedback controller is designed such that the closed loop system is quadratically stable and its output tracks a command step input. One such controller is obtained by applying the quadratic stabilization method from the viewpoint of Inverse LQ problem. Attractive features of the design method proposed lie in its simplicity in several senses from the practical viewpoint.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. E.J. Davison (1976), “The robust control of a servomechanism problem for linear time-invariant multivariable systems,” IEEE Trans. Auto. Control, vol. AC-21.

    Google Scholar 

  2. W. E. Schmitendorf and B. R. Barmish (1986), “Robust Asymptotic Tracking for Linear Systems with Unknown Parameters,” Automatica, vol.22, 355–360.

    Article  MATH  Google Scholar 

  3. B. R. Barmish (1985), “Necessary and sufficient conditions for quadratic stabilizability of an uncertain linear system,” J. Optim Theory. Appl., vol. 46, 399–408.

    Article  MATH  MathSciNet  Google Scholar 

  4. I. R. Petersen (1987), “A stabilization algorithm for a class of uncertain linear systems,” Systems & Control Lett., 8, 351–357.

    Article  MATH  MathSciNet  Google Scholar 

  5. I. R. Petersen (1988), “Stabilization of an uncertain linear system in which uncertain linear parameters enter into the input matrix,” SIAM J. Control Optim., vol. 26, 1257–1264.

    Article  MATH  MathSciNet  Google Scholar 

  6. P. P. Khargonekar, I. R. Petersen, and K. Zhou (1990), “Robust stabilization of uncertain linear systems: quadratic stabilizability and H control theory,” IEEE Trans. Auto. Control, vol. 35, 356–361.

    Article  MATH  MathSciNet  Google Scholar 

  7. T. Fujii (1987), “A new approach to LQ design from the viewpoint of the inverse regulator problem,” IEEE Trans. Auto. Control, vol. AC-32. 995–1004.

    Article  Google Scholar 

  8. T. Fujii, et al. (1987), “A Practical Approach to LQ design and its application to engine control,” Proc. 10th IFAC World Congress, Munich.

    Google Scholar 

  9. T. Fujii, T. Tsujino, and H. Uematsu, “The design of robust servo systems based on the quadratic stability theory,” Trans. of ISCIE, to be published (in Japanese).

    Google Scholar 

  10. T. Fujii and T. Tsujino (1991), “An Inverse LQ Based Approach to the Design of Robust Tracking Controllers for linear uncertain systems,” Proc. of MTNS, Kobe.

    Google Scholar 

  11. K. Zhou and P.P. Khargonekar (1988), “An algebraic Riccati equation approach to H optimization,” Systems & Control Lett., 11, 85–91.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

L. D. Davisson A. G. J. MacFarlane H. Kwakernaak J. L. Massey Ya Z. Tsypkin A. J. Viterbi Shigeyuki Hosoe

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag

About this paper

Cite this paper

Fujii, T., Tsujino, T. (1992). An inverse LQ based approach to the design of robust tracking system with quadratic stability. In: Davisson, L.D., et al. Robust Control. Lecture Notes in Control and Information Sciences, vol 183. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0114655

Download citation

  • DOI: https://doi.org/10.1007/BFb0114655

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-55961-0

  • Online ISBN: 978-3-540-47320-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics