Advertisement

Robust covariance control

  • J. H. Xu
  • R. E. Skelton
Conference paper
  • 288 Downloads
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 183)

Abstract

This paper extands first the covariance assignment theory for continuous time systems to the assignment of a covariance upper bound in the presence of structured perturbations. A systematic way is given to construct an assignable covariance upper bound for the purpose of robust design.

Keywords

Closed Loop System Algebraic Riccati Equation Continuous Time System Structure Perturbation Assignability Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Hotz and R. Skelton, ‘Covariance Control Theory', Int. J. Control Vol. 46, No. 1, pp. 13–32, 1987.zbMATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    E. Collins and R. Skelton, ‘A Theory of State Covariance Assignment for Discrete Systems', IEEE Trans. Auto. Control, Vol. AC-32, No. 1, pp. 35–41, Jan. 1987.CrossRefMathSciNetGoogle Scholar
  3. [3]
    R. Skelton and M. Ikeda, ‘Covariance Controllers for Linear Continuous Time Systems', Int. J. Control, Vol. 49, No. 5, pp. 1773–1785, 1989.zbMATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    C. Hsieh and R. Skelton, ‘All Discrete-Time Covariance Controllers', Proceedings ACC, Pittsburgh, 1989.Google Scholar
  5. [5]
    J.-H. Xu, R.E. Skelton and G. Zhu, ‘Upper and Lower Covariance Bounds for Perturbed Linear Systems', IEEE Trans. Auto. Control, vol. AC-35, no. 8, pp. 944–948, Aug. 1990.CrossRefMathSciNetGoogle Scholar
  6. [6]
    H. Kwakernaak and R. Sivan, Linear Optimal Control Systems, Wiley, New York, 1972.zbMATHGoogle Scholar
  7. [7]
    K. Yasuda, R.E. Skelton and K. Grigoriadis, ‘Covariance Controllers: A New Parameterization of the Class of All Stabilizing Controllers,’ submitted for publication in Automatica, 1990.Google Scholar
  8. [8]
    J.C. Doyle, K. Glover, P.P. Khargonekar and B.A. Francis, ‘State-Space Solution to Standard H2 and H Control Problems', IEEE Trans. Auto. Control, vol. AC-34, no. 8, pp. 831–847, Aug. 1989.CrossRefMathSciNetGoogle Scholar
  9. [9]
    D. Williamson, ‘Roundoff Noise Minimization and Pole-Zero Sensitivity in Fixed Point Digital Filters Using Residue Feedback,’ IEEE Trans. Acoustics, Speech and Signal Processing, vol. ASSP-34, no. 4, pp. 1013–1016, Aug. 1986.CrossRefGoogle Scholar
  10. [10]
    D. Williamson and R.E. Skelton, ‘Optimal q-Markov Cover for Finite Wordlength Implementation,’ Proc. ACC, Atlanta, 1988.Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • J. H. Xu
    • 1
  • R. E. Skelton
    • 1
  1. 1.School of Aeronautics & AstronauticsPurdue UniversityWest Lafayette

Personalised recommendations