(J, J′)-lossless factorization using conjugations of zero and pole extractions

  • Hidenori Kimura
Conference paper
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 183)


Riccati Equation Pole Extraction Spectral Factorization Left Annihilator Concatenation Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J.A. Ball and N. Cohen, ‘The sensitivity minimization in an H norm: Parameterization of all optimal solutions,’ Int. J. Control, 46, pp. 785–816 (1987)zbMATHMathSciNetCrossRefGoogle Scholar
  2. [2]
    J.A. Ball and J.W. Helton, A Beurling-Lax Theorem for the Lie group U(m, n) which contains most classical imterpolation,’ J. Operator Th., 9, pp. 107–142 (1983)zbMATHMathSciNetGoogle Scholar
  3. [3]
    J.A. Ball, J.W. Helton and M. Verma, ‘A factorization principle for stabilization of linear control systems,’ Reprint.Google Scholar
  4. [4]
    J.A. Ball and A.C.M. Ran, ‘Optimal Hankel norm model reduction and Wiener-Hopf factorization I: The canonical case,’ SIAM J. Contr. Optimiz., 25, pp.362–382 (1987).zbMATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    H. Bart, I. Gohberg, M.A. Kaashoek and P. van Dooren, ‘Factorizations of transfer functions,’ SIAM J. Contr. Optimiz. 18, pp. 675–696 (1980).zbMATHCrossRefGoogle Scholar
  6. [6]
    P. Dewilde, ‘Lossless Chain-scattering matrices and optimum linear prediction: The vector case,’ Circuit Th. & Appl., 9, pp. 135–175 (1981).zbMATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    B.A. Francis, A Course in H∞ Control, Springer, New York (1987).Google Scholar
  8. [8]
    M. Green, K. Glover, D. Limebeer and J. Doyle, ‘A J-spectral factorization approach to H∞ control,’ SIAM J. Contr. Optimiz., 28, pp.1350–1371 (1990).zbMATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    H. Kimura, ‘Conjugation, interpolation and model-matching in H∞,’ Int. J. Control, 49, pp.269–307 (1989).zbMATHCrossRefGoogle Scholar
  10. [10]
    H. Kimura, 'state space approach to the classical interpolation problem and its applications,’ in Three Decades of Mathematical System Theory, H. Nijmeijer and J.M. Schumacher (eds.), Springer-Verlag,,pp. 243–275(1989)Google Scholar
  11. [11]
    H. Kimura, Y. Lu and R. Kawatani, ‘On the structure of H∞ control systems and related extensions,’ IEEE Trans. Auto. Contr., AC-36, pp. 653–667 (1991).CrossRefMathSciNetGoogle Scholar
  12. [12]
    H. Kimura, ‘Chain-scattering formulation of H∞ control problems,’ Proc. Workshop on Robust Control, San Antonio (1991).Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Hidenori Kimura
    • 1
  1. 1.Department of Mechanical Engineering for Computer-Controlled MachineryOsaka UniversityJapan

Personalised recommendations