Advertisement

Complex surface characterization of modified carbon fibers by means of spectroscopic and thermodynamic methods

  • F. Simon
  • H. -J. Jacobasch
  • D. Pleul
  • P. Uhlmann
Interfaces
Part of the Progress in Colloid & Polymer Science book series (PROGCOLLOID, volume 101)

Abstract

The wish to optimize the interactions between carbon fiber surface and polymer matrix and the basic interest in the fundamentals of adhesion required fiber surface characterization by various physicochemical measuring methods. This paper discusses the results of different physico-chemical measuring methods, e.g. inverse gas chromatography and electrokinetic measurements, to estimate the acid-base surface properties of carbon fibers. The discussion has been focused on the changes in the Brønsted and Lewis acid-base properties after a surface treatment.

In addition, photoelectron spectroscopic investigations of carbon fibers, which show the elemental surface composition, are a successful tool to demonstrate the molecular reasons of the thermodynamic surface properties.

The combination of different physico-chemical and spectroscopic measuring methods allowed to get comprehensive knowledge of the fiber surface chemistry.

Key words

Acid-base properties carbon fibers inverse gas chromatography streaming potential surface characterization surface modification XPS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Heißler H (1981) In: Processing and use of carbon fibre reinforced plastics VDI-Verlag, Düsseldorf, pp 1–4Google Scholar
  2. 2.
    Kozlowski C, Sherwood PMA (1984) J Chem Soc Faraday Tran I 80:2099–2107CrossRefGoogle Scholar
  3. 3.
    Xie Y, Sherwood PMA (1990) Chem Mater 2:293–299CrossRefGoogle Scholar
  4. 4.
    Desimoni F, Casella G, Salvi AM, Cataldi TR, Morone A (1992) Carbon 30:527–531CrossRefGoogle Scholar
  5. 5.
    King JA, Buttry DA, Adams DF (1993) Polymer Composites 14:292–300CrossRefGoogle Scholar
  6. 6.
    Bhardwaj A, Bhardwaj IS (1994) J Appl Polym Sci 51:2015–2020CrossRefGoogle Scholar
  7. 7.
    Seo KS, Fornes RE, Gilbert RD, Memory JD (1988) J Polymer Sci, Part B: Polymer Physics 26:245–255CrossRefGoogle Scholar
  8. 8.
    Mäder E, Grundke K, Jacobasch HJ, Wachinger G (1994) Composites 25:739–744CrossRefGoogle Scholar
  9. 9.
    Mäder E, Grundke K, Janke A (1995) In: Jacobasch HJ (ed) Proc. Workshop Interfaces in Carbon, Glass and Polymer Fibre Reinforced Polymer Composites. Institute of Polymer Research, Dresden, Germany, pp 32–43Google Scholar
  10. 10.
    Marmo MJ, Mostafa MA, Jinnal H, Fowkes FM, Manson JA (1976) Ind Eng Chem Prod Res Dev 15:206–211CrossRefGoogle Scholar
  11. 11.
    Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer Corporation, pp 252–253Google Scholar
  12. 12.
    Shirley DA (1972) Phys Rev B5:4709–4714Google Scholar
  13. 13.
    Jacobasch HJ, Schurz J (1988) Progr Colloid Polymer Sci 77:40–48CrossRefGoogle Scholar
  14. 14.
    Börner M, Jacobasch HJ, Simon F, Churaev NV, Segeeva IP, Sobolev VD (1994) Colloids and Surfaces A: Physicochemical and Engineering Aspects A 85:9–17CrossRefGoogle Scholar
  15. 15.
    Gutmann V (1978) The donor-acceptor approach to molecular interaction, Plenum Press, New York, LondonGoogle Scholar
  16. 16.
    Jacobasch HJ, Grundke K, Uhlmann P, Simon F, Mäder E (1995) J. Adhesion Science and Technology 9:327–350Google Scholar

Copyright information

© Steinkopff Verlag 1996

Authors and Affiliations

  • F. Simon
    • 1
  • H. -J. Jacobasch
    • 1
  • D. Pleul
    • 1
  • P. Uhlmann
    • 1
  1. 1.Institute of Polymer Research DresdenDresdenFRG

Personalised recommendations