Wetting measurements on smooth, rough and porous solid surfaces

  • K. Grundke
  • T. Bogumil
  • T. Gietzelt
  • H. -J. Jacobasch
  • D. Y. Kwok
  • A. W. Neumann
Part of the Progress in Colloid & Polymer Science book series (PROGCOLLOID, volume 101)


The solid-vapour surface tension has been determined by contact angle measurements with polar and non-polar liquids on flat solid surfaces using Axisymmetric Drop Shape Analysis (ADSA) and by capillary penetration experiments on rough and porous solids. For smooth and inert, well prepared solid surfaces (PTFE, FC 721 on mica, FEP, PET) the plot of γ lv cos Θ versus γ lv yields smooth curves which are consistent with the equation of state approach to calculate solid-vapour and solid-liquid interfacial tensions. Other experimental patterns of contact angle data are caused by surface roughness and non-inert solids which may result in contact angles incompatible to Young’s equation. An alternative way to obtain the solidvapour surface tension of rough and porous solids are capillary penetration experiments. The determination of the penetration velocity of liquids into rough and porous solids yields lv coΘ versus γ lv plots, which provide γ sv values for these systems; K is an unknown parameter of the constant geometry of the porous solid. The application of this concept was demonstrated for a hydrophobic PTFE powder and for hydrophilic Cellulose membranes.

Key words

Wetting contact angle interfacial tension capillary penetration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    De Gennes PG (1985) Review Mod Phys 57:827CrossRefGoogle Scholar
  2. 2.
    Misev TA (ed) (1991) Powder Coatings Chemistry and Technology. John Wiley, New York, pp 206Google Scholar
  3. 3.
    Garbassi F, Morra M, Occhiello E (eds) (1994) Polymer Surfaces From Physics to Technology, Chapter 9. John Wiley, New YorkGoogle Scholar
  4. 4.
    Neumann AW, Good RJ, Hope CJ, Sejpal M (1974) J Colloid Interface Sci 49:291CrossRefGoogle Scholar
  5. 5.
    Spelt JK, Li D, Neumann AW (1992) Chapter 5: The Equation of State Approach to Interfacial Tensions In: Schrader ME, LOeb GI (eds) Modern Approaches to Wettability. Plenum Press, New York, pp 101Google Scholar
  6. 6.
    Fowkes FM (1964) Ind Eng Chem 12:40CrossRefGoogle Scholar
  7. 7.
    van Oss CJ, Chaudhury MK, Good RJ (1988) Chem Rev 88:927CrossRefGoogle Scholar
  8. 8.
    Rotenberg Y, Boruvka L, Neumann AW (1983) J Colloid Interface Sci 93:169CrossRefGoogle Scholar
  9. 9.
    Cheng P, Li D, Boruvka L, Rotenberg Y, Neumann AW (1990) Colloids and Surfaces 43:151CrossRefGoogle Scholar
  10. 10.
    Li D, Neumann AW (1992) J Colloid Interface Sci 148:190CrossRefGoogle Scholar
  11. 11.
    Li D, Xie M, Neumann AW (1993) Colloids Polym Sci 271:573CrossRefGoogle Scholar
  12. 12.
    Li D, Gaydos J, Neumann AW (1989) Langmuir 5:1133CrossRefGoogle Scholar
  13. 13.
    Defay R (ed) (1934) Etude Thermodynamique de la Tension Superficielle, Gauthier-Villars, ParisGoogle Scholar
  14. 14.
    Defay R, Priogine (1966) In: Bellemans A, Everett DH (eds) Surface Tension and Adsorption. Longmans-Green, LondonGoogle Scholar
  15. 15.
    Ward CA, Neumann AW (1974) J Colloid Interface Sci 49:286CrossRefGoogle Scholar
  16. 16.
    Li D, Neumann AW (1990) J Colloid Interface Sci 137: 304CrossRefGoogle Scholar
  17. 17.
    Vargha-Butler EI, Absolom DR, Neumann AW, Hamza HA (1989) In: Botsaris GD, Glazman TM (eds) Interfacial Phenomena in Coal Technology, Chapter 2: Characterization of Coal by Contact Angle and Surface Tension Measurements. Marcel Dekker, Inc New YorkGoogle Scholar
  18. 18.
    Skinner FK, Rotenberg Y, Neumann AW (1989) J Colloid Interface Sci 130:25CrossRefGoogle Scholar
  19. 19.
    Bruil HG (1974) Colloid Polym Sci 252:32CrossRefGoogle Scholar
  20. 20.
    Cheever GD (1983) J Coat Technol 55:53Google Scholar
  21. 21.
    Kilau HW (1987) Colloids and Surfaces 26:217CrossRefGoogle Scholar
  22. 22.
    Grundke K, Boerner M, Jacobasch HJ (1991) Colloids and surfaces 58:47CrossRefGoogle Scholar
  23. 23.
    Washburn EW (1921) Phys Rev 17:273CrossRefGoogle Scholar
  24. 24.
    Costanzo PM, Giese RF, van Oss CJ (1990) J Adhesion Sci Technol 4:267Google Scholar
  25. 25.
    van Oss CJ, Giese RF, Li Z, Murphy K, Norris J, Chaudhury MK, Good RJ (1992) J Adhesion Sci Technol 6:413Google Scholar
  26. 26.
    Buckton G (1993) J Adhesion Sci Technol 7:205CrossRefGoogle Scholar
  27. 27.
    Chibowski E, Holysz L (1992) Langmuir 8:710CrossRefGoogle Scholar
  28. 28.
    Bambauer R, Weber U, Lissmann J (1990) Hämostasiologie 10:84Google Scholar
  29. 29.
    Jacobasch HJ (1984) Oberflächenchemie faserbildender Polymerer, Akademieverlag, BerlinGoogle Scholar

Copyright information

© Steinkopff Verlag 1996

Authors and Affiliations

  • K. Grundke
    • 1
  • T. Bogumil
    • 1
  • T. Gietzelt
    • 1
  • H. -J. Jacobasch
    • 1
  • D. Y. Kwok
    • 2
  • A. W. Neumann
    • 2
  1. 1.Institut für Polymerforschung dresden eVDresdenFRG
  2. 2.Department of Mechanical EngineeringUniversity of TorontoTorontoCanada

Personalised recommendations