Advertisement

Interactions of a water-soluble polymeric detergent additive (polycarboxylate) with clay minerals from soil

  • F. Blockhaus
  • J. -M. Séquaris
  • H. D. Narres
  • M. J. Schwuger
Thomas-Graham-Medal
Part of the Progress in Colloid & Polymer Science book series (PROGCOLLOID, volume 101)

Abstract

Acrylic/maleic acid (PAA-PMLA) copolymer is a low biodegradable dispersing agent. Its interfacial behaviour is investigated at clay minerals which control the transport of organic compounds in the soil compartment. Adsorption affinities and surface coverage results indicate that binding sites are located on edge faces of clay minerals. contributions of long-range electrostatic (anion exchange reaction) and of short-range chemical interactions (ligand exchange reaction) to the adsorption/desorption process are discussed. Thus, the roles played by protonated aluminol binding sites at kaolinite surface and by the ionization degree of the copolymer are studied from variations of pH and ionic strength and from binding competitions of phosphate compounds. a dependence of the PAA-PMLA copolymer desorption on the adsorbed layer structure can be concluded. Furthermore, investigations concerning the interactions with kaolinite components, Al and Si, show that only the non-crystalline form of the adsorbed aluminium on the akolinite can be solubilized.

Key words

Polycarboxylate kaolinite adsorption desorption phosphate aluminol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Swift G (1993) Acc Chem Res 26:105–110CrossRefGoogle Scholar
  2. 2.
    Opgenorth H-J (1992) In: Hutzinger O (eds) The Handbook of Environmental Chemistry, Vol 3, Part F. Springer, Berlin, pp 337–350Google Scholar
  3. 3.
    Theng BKG (1982) Clays Clay Miner 30:1–10CrossRefGoogle Scholar
  4. 4.
    Sastry NV, Séquaris J-M, Schwuger MJ (1995) J Colloid Interface Sci 171:224–233 and references cited thereinCrossRefGoogle Scholar
  5. 5.
    Blockhaus F, Séquaris J-M, Schwuger MJ (1991) Tenside Surf Det 28:447–451Google Scholar
  6. 6.
    Blockhaus F (1996) PhD thesis, Univ. DüsseldorfGoogle Scholar
  7. 7.
    Blockhaus F, Séquaris J-M, in preparationGoogle Scholar
  8. 8.
    Young SD, Bache BW (1985) J Soil Sci 36:261–269CrossRefGoogle Scholar
  9. 9.
    Wassmer K-H, Schroeder U, Horn D (1991) Makromol Chem 192:553–565CrossRefGoogle Scholar
  10. 10.
    Séquaris J-M, Kalabokas P (1993) Anal Chim Acta 281:341–346CrossRefGoogle Scholar
  11. 11.
    Wieland E, Stumm W (1992) Geochim Cosmochim Acta 56:3339–3355CrossRefGoogle Scholar
  12. 12.
    Sposito G (1989) The Chemistry of Soils. Oxford University Press, New York, pp 127–147Google Scholar
  13. 13.
    Muljadi D, Posner AM, Quirk JP (1966) J Soil Sci 17:212–229CrossRefGoogle Scholar
  14. 14.
    Dodson PJ, Somasundaran J (1984) J Colloid Interface Sci 97:481–487CrossRefGoogle Scholar
  15. 15.
    Stumm W, Wollast R (1990) Rev Geophys 28:53–69Google Scholar
  16. 16.
    Chin P-KF, Mills GL (1991) Chem Geol 90:307–317CrossRefGoogle Scholar
  17. 17.
    Tan KH (1980) Soil Sci 129:5–11CrossRefGoogle Scholar
  18. 18.
    Carroll-Webb S, Walther JV (1988) Geochim. Cosmochim. Acta 52:2609–2623CrossRefGoogle Scholar
  19. 19.
    Holdren GR jr, Berner RA (1979) Geochim. Cosmochim. Acta 43:161–171CrossRefGoogle Scholar
  20. 20.
    Drever JI, Vance GF (1994) In: Pittsman ED, Lewan MD (eds) Organic acids in Geological Processes, Springer, Berlin, pp 138–160Google Scholar

Copyright information

© Steinkopff Verlag 1996

Authors and Affiliations

  • F. Blockhaus
    • 1
  • J. -M. Séquaris
    • 1
  • H. D. Narres
    • 1
  • M. J. Schwuger
    • 1
  1. 1.Institute of Applied Physical ChemistryResearch Center (KFA)JülichFRG

Personalised recommendations