Gels pp 138-146 | Cite as

Kinetics of sorption processes in polymer gels

  • V. I. Irzhak
  • L. I. Kuzub
Conference paper
Part of the Progress in Colloid & Polymer Science book series (PROGCOLLOID, volume 102)


Kinetic features of sorption process in polymers gels with complicated supermolecular structure have been analyzed. The mechanism of parallel diffusion was suggested to describe transfer processes which consist of several partial ones carried out simultaneously in different structure elements. Each structure region is characterized by own diffusion coefficient. In this case, apparent diffusion coefficient of the transfer process as a whole is a function of time D(t). The different averages of diffusion coefficient and ultimate concentration of sorbate can be obtained, using the initial rate of process and extrapolation D(t)t=0. These values depend on averaging type allow to relate the sorption kinetics departures from Fick’s law because of heterogeneity of polymer structure or other reasons (e.g., relaxation retardation of diffusion). The experimental data were treated in framework of this model. As a result, it was shown that the approach is convenient to determine the mechanism of sorption processes in heterogeneous polymer structures.

Key words

Sorption kinetics diffusion polymer supermolecular structure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chalych AE (1987) Diffuziya v Polimernykh Sistemakh (Diffusion in Polymer Systems). Khimia, MoscowGoogle Scholar
  2. 2.
    Stauffer D (1985) Introduction to Percolation Theory. Taylor and Francis, London, PhiladelphiaGoogle Scholar
  3. 3.
    Sokolov IM (1986) Usp Fiz Nauk 150:222–293Google Scholar
  4. 4.
    Petropoulos JH (1989) J Polym Sci Polym Phys Ed 27:603–620CrossRefGoogle Scholar
  5. 5.
    Koros WJ (1993) Macromolecules 26:1493–1507CrossRefGoogle Scholar
  6. 6.
    Petropoulos JH (1994) In: Paul DR, Yampolskii YuP (eds) Polymeric Gas Separation Membranes. CRC Press, Boca Raton, 17–81Google Scholar
  7. 7.
    Volokhina AV (1991) Khim volokna 5:7–12Google Scholar
  8. 8.
    Shuster NM, Dobrovol’skaya IP, Chereiskii ZYu, Egorov EA (1989) Vysokomol Soedin Ser B 31:348–351Google Scholar
  9. 9.
    Li L-S, Allard LF, Bigelow WC (1983) J Macromol Sci Phys 22:269–278CrossRefGoogle Scholar
  10. 10.
    Dolb MG, Jonson DJ, Savill BP (1977) J Polym Sci Polym Phys Ed 15:2201–2215CrossRefGoogle Scholar
  11. 11.
    Rozhdestvenskaya TA, Tikanova LYa, Volokhina AV, Shel’din VK, Kvitko IYa, Migaev GI, Kudryavtsev GI (1989) Vysokomol Soedin Ser B 31:389–392Google Scholar
  12. 12.
    Nitkitina OV, Kuzub LI, Irzhak VI (1993) Polymer Sci Ser A 35:646–650Google Scholar
  13. 13.
    Pilyugin VV, Kritskaya DA, Ponomarev AN (1984) Vysokomol Soedin Ser B 26:907–910Google Scholar
  14. 14.
    Crank J (1957) The Mathematics of Diffusion. Oxford University, OxfordGoogle Scholar
  15. 15.
    Mensitieri G, Apicella A, Kenny JM, Nicolais L (1989) L Appl Polym Sci 37:381–396CrossRefGoogle Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag GmbH & Co. KG 1996

Authors and Affiliations

  • V. I. Irzhak
    • 1
  • L. I. Kuzub
    • 1
  1. 1.Institute of Chemical PhysicsChernogolovka Moscow distr.Russia

Personalised recommendations