Gels pp 82-85 | Cite as

Thermoreversible gelation in syndiotactic polystyrene/solvent systems

  • T. Roels
  • F. Deberdt
  • H. Berghmans
Conference paper
Part of the Progress in Colloid & Polymer Science book series (PROGCOLLOID, volume 102)


Thermoreversible gelation in solutions of syndiotactic poly-styrene (sPS) is investigated. Gelation in the solvents toluene, chlorobenzene, 1,2-dichlorobenzene, chloroform, 1,4-dioxane, tetrahydrofuran, o-xylene, cis- and trans-decalin is obtained by quenching the solutions in an ice bath.

Depending on the temperature and solvent-type, two gel types can be formed. Elastic, hazy gels (type I) can be obtained in all solvents by qnenching in an ice bath. Cooling of the solutions in cis- and trans-decalin to high temperatures, and heating of type I gels, leads to the formation of past-like, opaque gels (type II). This gel type melts at higher temperatures than gel type I.

The solvent-dependence of this behaviour is related to the stability domains in the temperature-concentration diagram of different crystalline modifications. In cis- and trans-decalin, a transformation from the helical phase (gel type II) to be zigzag phase (gel type II) can take place on heating.

Key words

Thermoreversible gelation syndiotactic polystyrene phase behaviour 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berghmans H, Donkers A, Frenay L, Stoks W, De Schrijver FC, Moldenaers P, Mewis J (1986) Polymer 28:97–102CrossRefGoogle Scholar
  2. 2.
    Berghmans M, Thys S, Cornette M, Berghmans H, De Schrijver FC, Moldenaers P, Mewis J (1994) Marcomolecules 27:7669–7676CrossRefGoogle Scholar
  3. 3.
    Spevacek J, Schneider (1987) Adv in Colloid and Interface SC 27:81–150CrossRefGoogle Scholar
  4. 4.
    Fox FG, Garret BS, Goode WE, Gratch S, Rincaid JF, Spell A, Stroupe JD (1958) J Am Chem Soc 80:1768–1769CrossRefGoogle Scholar
  5. 5.
    Jones D, Latham A, Keller A, Miyasaka (1973) J Pol Sc Pol Phys Ed 11:1759–1767Google Scholar
  6. 6.
    Atkins E, Esaak D, Keller A, Miyasaka K (1977) J Pol Soc Pol Phys Ed 15:211–226CrossRefGoogle Scholar
  7. 7.
    Corradini P, Guerra G, Petraccone V, Pirozzi B (1980) Eur Polym J 5:1089–1092CrossRefGoogle Scholar
  8. 8.
    Sundararajan P, Tyrer N, Bluhm T (1982) Macromolecules 15:286–290CrossRefGoogle Scholar
  9. 9.
    Guenet JM (1986) Macromolecules 19:1960–1968CrossRefGoogle Scholar
  10. 10.
    Chatani Y, Nakamura N (1993) Polymer 34:1644–1648CrossRefGoogle Scholar
  11. 11.
    Grassi A, Longo P, Guerra G (1989) Makromol Chem Rapid Commun 10:687–690CrossRefGoogle Scholar
  12. 12.
    Kobayashi M, Nakaoki T, Ishihara N (1989) Macromolecules 22:4377–4382CrossRefGoogle Scholar
  13. 13.
    Guerra G, Vitagliano V, De Rosa C, Petraccone V, Corradini P (1990) Macromolecules 23:1539–1544CrossRefGoogle Scholar
  14. 14.
    Deberdt F, Berghmans H (1993) Polymer 34, 10:2192–2201CrossRefGoogle Scholar
  15. 15.
    Deberdt F, Berghmans H (1994) Polymer 35, 8:1694–1704CrossRefGoogle Scholar
  16. 16.
    Roels T, Deberdt F, Berghmans H (1994) Macromolecules 27:6216–6220CrossRefGoogle Scholar
  17. 17.
    Atkins EDT, Hill MJ, Jarvis DA, Keller A, Sarhene E, Shapiro JS (1984) Colloid Polym Sci 262:22–45CrossRefGoogle Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag GmbH & Co. KG 1996

Authors and Affiliations

  • T. Roels
    • 1
  • F. Deberdt
    • 1
  • H. Berghmans
    • 1
  1. 1.Laboratory for Polymer ResearchKatholieke Universiteit LeuvenHeverleeBelgium

Personalised recommendations