Gels pp 64-70 | Cite as

Networks of surfactant-made physical organogels

  • P. Terech
Conference paper
Part of the Progress in Colloid & Polymer Science book series (PROGCOLLOID, volume 102)


Thermoreversible networks can be formed from associated small molecules in appropriate organic solvents. The present paper reports on the use of neutrons and x-ray scattering techniques to probe the structural features of the colloidal aggregates constituting the gel networks and on rheological experiments which characterize some of the dynamic and semi-static properties. Four types of gel systems, characterized by the nature of their junction zones, are discussed. Depending upon the chemical constitution of the gelators, fibers, semi-rigid molecular threads and rods can be formed and give, above the overlap threshold (of the order of 0.5–1%), gels with high yield stress values, pseudo-plastic fluids or thixotropic gels, respectively. The specific examples of 12-hydroxystearic acid (HSA), cholesteryl anthraquinone-2-carboxylate (CAQ), binuclear copper (II) tetracarboxylate (Cu2S8) and a trisubstituted metalloporphyrin, zinc (II) 5-(p-carboxyphenyl)-10, 15, 20-tris(p-hexadecyloxycarbonylphenyl) porphyrinate, (ZnP3), are discussed.

Key words

61.12E-Neutron scattering technqieus 82.70D-Colloids 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Terech P (1996) In: Low-molecular weight organogelators, Specialist surfactants, Blackie Academic & Professional, Chapman & Hall (in press)Google Scholar
  2. 2.
    Terech P, Rodriguez V, Barnes J, McKenna GB (1994) Langmuir 10:3406–3418CrossRefGoogle Scholar
  3. 3.
    Lin Y-C, Kachar B, Weiss RG (1989) J Am Chem Soc 111:5542–5551CrossRefGoogle Scholar
  4. 4.
    Maldivi P (1989) Thesis, Grenoble, FranceGoogle Scholar
  5. 5.
    Terech P, Gebel G, Ramasseul R, Langmuir (in press)Google Scholar
  6. 6.
    Cabane B (1987) Surfactant solutions, Surfactant Science Series 22:57, Zana R (ed) Marcel Dekker Inc, New YorkGoogle Scholar
  7. 7.
    Glatter O, Kratky O (1982) In: Small angle X-ray scattering, Academic Press, LondonGoogle Scholar
  8. 8.
    Terech P (1992) J Phys II France 2:2181–2195CrossRefGoogle Scholar
  9. 9.
    Terech P, Ostuni E, Weiss RG (1996) J. Phys. Chem 100:3759–3766CrossRefGoogle Scholar
  10. 10.
    Terech P, Furman I, Weiss RG (1995) J Phys Chem 99:9558–9566CrossRefGoogle Scholar
  11. 11.
    Mukkamala R, Weiss RG (1995) J Chem Soc, Chem Commun, pp 375–376Google Scholar
  12. 12.
    Terech P, Schaffhauser V, Maldivi P, Guenet JM (1992) Europhys Lett 17: 515–521CrossRefGoogle Scholar
  13. 13.
    Terech P, Schaffhauser V, Maldivi P, Guenet JM (1992) Langmuir 8: 2104–2106CrossRefGoogle Scholar
  14. 14.
    Terech P, MKaldivi P, Dammer C (1994) J Phys France II 4:1799–1811CrossRefGoogle Scholar
  15. 15.
    Dammer C, Maldivi P, Terech P, Guenet JM (1995) Langmuir 11: 1500–1506CrossRefGoogle Scholar
  16. 16.
    Cates ME (1987) Macromolecules 20:2289–2296CrossRefGoogle Scholar
  17. 17.
    Cates ME (1988) J Phys France 49: 1593–1600CrossRefGoogle Scholar
  18. 18.
    Cates ME, Candau SJ (1990) J Phys Condens Matter 2: 6869–6892CrossRefGoogle Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag GmbH & Co. KG 1996

Authors and Affiliations

  • P. Terech
    • 1
  1. 1.Département de Recherche Fondamentale sur la Matière CondenséeSI3M PCM C.E.A.-GrenobleGrenoble Cédex 09France

Personalised recommendations