Advertisement

Gels pp 26-31 | Cite as

Rheological properties of modified cellulosic polymers in semi-dilute regime: Effect of salinity and temperature

  • L. Picton
  • G. Muller
Conference paper
Part of the Progress in Colloid & Polymer Science book series (PROGCOLLOID, volume 102)

Abstract

The rheological properties of low molecular weight (LW) and high molecular weight (HW) hydrophobically modified hydroxyethylcellulose (HMHEC) have been studied in semi-dilute regime of concentration (C>C*) and compared with their unmodified parent polymers (HEC). Flow behavior and viscoelastic properties of modified polymers as a function of salt (NaCl, KSCN), temperature (20–60°C) and shear rate (0.1–1000 s−1) are explained by the existence of hydrophobic interactions. These latter are reinforced in the presence of water structure makers (NaCl).

Key words

Associative polymer amphiphilic viscosity rheology viscoelastic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Biggs S, Selb J, Candau F (1992) Langmuir 8:838–847CrossRefGoogle Scholar
  2. 2.
    Schulz DN, Kaladas JJ, Maurer JJ, Bock J, Pace SJ, Schulz WW (1987) Polymer 28:2110–2115CrossRefGoogle Scholar
  3. 3.
    Mc Cormick CL, Nonaka T, Johnson CB (1988) Polymer 29:731–739CrossRefGoogle Scholar
  4. 4.
    Wang KT, Iliopoulos I, Audbert R (1988) Polym Bul 20:577–582Google Scholar
  5. 5.
    Landoll LM (1982) J of Polym Sci, Polym Chem Ed 20:443–455CrossRefGoogle Scholar
  6. 6.
    Akiyoshi K, Degushi S, Morigushi N, Yamagushi S, Sunamoto J (1993) Macromol 26:3062–3068CrossRefGoogle Scholar
  7. 7.
    Gelman RA, Barth HG (1986) In: Glass JE Ed., “Water Soluble Polymers: beauty with performance”, Adv in Chem Series 213 pp 101–110, Am Chem Soc, Washington DCGoogle Scholar
  8. 8.
    Tanaka R, Meadows J, Phillips GO, William PA (1990) Carbohydrate Polymers 12:443–459CrossRefGoogle Scholar
  9. 9.
    Magny B, Iliopoulos I, Audebert R (1991) Polymer Communications 32:456–458Google Scholar
  10. 10.
    Bock J, Siano DB, Valint PL, Pace SJ (1987) Polym Mat Sci Eng 57:487–491Google Scholar
  11. 11.
    Picton L, Merle L, Muller G (1996) J of Polym Charact and Analysis 2:103–113CrossRefGoogle Scholar
  12. 12.
    Sau AC (1987) Polym Mat Sci Eng 57:497–501Google Scholar
  13. 13.
    Goodwin JW, Hugues RW, Lam CK, Miles JA, Warren BCH (1989) In: Glass JE Ed., “Polymer in Aqueous Media: performance through association” Adv in Chem, Series 223 pp 365–378, Am Chem Soc, Washington DCGoogle Scholar
  14. 14.
    Tanaka R, Meadows J, Williams PA, Phillips GO (1992) Macromol 25:1304–1310CrossRefGoogle Scholar
  15. 15.
    Varelas CG, Steiner CA (1990) In: “Absorbent Polymer Technology”, pp 259–273, Elsevier Ed., AmsterdamGoogle Scholar
  16. 16.
    Sivadasan K, Somasundaran P (1990) Colloids and Surfaces 49:229–239CrossRefGoogle Scholar
  17. 17.
    Franks F (1975) In: Franks F ed., “Water: a comprehensive treatise” Vol 4, p 1, Plenum: New YorkGoogle Scholar
  18. 18.
    Leung PS, Goddard ED (1991) Langmuir 7:608–609CrossRefGoogle Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag GmbH & Co. KG 1996

Authors and Affiliations

  • L. Picton
    • 1
  • G. Muller
    • 1
  1. 1.URA 500 CNRS “Polymères, Biopolymères et Membranes”Université de RouenMont Saint Aignan CedexFrance

Personalised recommendations