Gels pp 9-14 | Cite as

Characterization of helical structures in gelatin networks and model polypeptides by circular dichroism

  • F. A. de Wolf
  • R. C. A. Keller
Conference paper
Part of the Progress in Colloid & Polymer Science book series (PROGCOLLOID, volume 102)


Reversible physical crosslinks (junction zones) in gelatin gels and films are thought to consist of triple helical collagen-like structures, however other structures may also occur. In an attempt to understand the relation between the material properties and the various junction structures and their abundance, we characterized these structures using circular dichroism (CD) as a function of the conditions applied. It appeared that the commonly used reference CD spectra for random coil and 31 helix could not be used to deconvolute the spectra observed for gelatin. Most probably, the commonly-used random coil reference spectra do not really reflect unordered structure, while the random coil reference based on the cationic form of polyLysine actually reflects a clear helicity. Denatured gelatin of collagen were found to be better approximations of an unordered polypeptide structure. The prolyl chromophore was shown to have a pronounced influence on the shape and position of the CD spectra. Thus, it was concluded that only polypeptides with the appropriate prolyl content can be used as references, while analysing the relative secondary structure contents by CD. By using temperature-dependent CD, we were able to discern multiple and single helical structures at high and low gelatin concentrations, respectively, by the observed cooperativity of helix-to-coil transition.

Key words

Gelation circular dichroism proline content random coil thermal denaturation model peptide 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rich A, Crick FHC (1961) J Mol Biol 3:483CrossRefGoogle Scholar
  2. 2.
    Ramachandran GN (1967) In: Ramachandran GN (ed) Treatise on Collagen, Vol. 1. Academic Press, New York, pp 103–183Google Scholar
  3. 3.
    Bella J, Eaton M, Brodsky B, Berman HM (1994) Science 266:75CrossRefGoogle Scholar
  4. 4.
    Piez KA, Carrillo AL (1964) Biochemistry 3:908CrossRefGoogle Scholar
  5. 5.
    Harrington WF, Von Hippel PA (1961) Arch Biochem Biophys 92:100CrossRefGoogle Scholar
  6. 6.
    Creighton (1993) Proteins — Structures and molecular properties. WH Freeman & Co, New York, pp 171–182Google Scholar
  7. 7.
    Grathwohl C, Wüthrich K (1976) Biopolymers 15:2025CrossRefGoogle Scholar
  8. 8.
    Sarkar SK, Young PE, Sullivan CE, Torchia DA (1984) Proc Natl Acad Sci 81:4800CrossRefGoogle Scholar
  9. 9.
    Harrington WF, Rao NV (1970) Biochemistry 19:3714CrossRefGoogle Scholar
  10. 10.
    Harrington WF, Karr GM (1970) Biochemistry 9:3725CrossRefGoogle Scholar
  11. 11.
    Hauschka PV, Harrington WF (1970) Biochemistry 9:3734CrossRefGoogle Scholar
  12. 12.
    Hauschka PV, Harrington WF (1970) Biochemistry 9:3745CrossRefGoogle Scholar
  13. 13.
    Hauschka PV, Harrington WF (1970) Biochemistry 9:3754CrossRefGoogle Scholar
  14. 14.
    Te Nijenhuis K (1981) Colloid Polym Sci 259:107Google Scholar
  15. 15.
    Te Nijenhuis K (1990) In: Burchard W, Ross-Murphy SB (eds) Physical networks — Polymers and gels. Elsevier Applied Science, London, New York, pp 15–33Google Scholar
  16. 16.
    Te Nijenhuis K (1991) Acromol Chem, Macromol Symp 45:117Google Scholar
  17. 17.
    Djabouror M (1988) Contemp Physics 29:273CrossRefGoogle Scholar
  18. 18.
    Ross-Murphy SB (1992) Polymer 33:2622CrossRefGoogle Scholar
  19. 19.
    Heidemann, E, Roth W (1982), Adv Polym Sci 43:145Google Scholar
  20. 20.
    Engel J (1962) Z Physiol Chem 328:94Google Scholar
  21. 21.
    Benguigui L, Busnel JP, Durand D (1991) Polymer 32:2680CrossRefGoogle Scholar
  22. 22.
    Tiffany ML, Krimm S (1969) Biopolymers 8:347CrossRefGoogle Scholar
  23. 23.
    Woody RW (1977) J Polym Sci Macromol Rev 12:181CrossRefGoogle Scholar
  24. 24.
    Woody RW (1992) Adv Biophys Chem 2:37Google Scholar
  25. 25.
    Harrington WF, Rao NV (1967) In: Ramachandran GN (ed) Conformation of biopolymers. Academic Press, London, New York, pp 513–531Google Scholar
  26. 26.
    Wu CC, Komoroski RA, Mandelkern L (1975) Macromolecules 8:635CrossRefGoogle Scholar
  27. 27.
    Rabanal F, Ludevid MD, Pons M, Giralt E (1993) Bioploymers 33:1019CrossRefGoogle Scholar
  28. 28.
    Engel J, Kurtz J, Katchalski E, Berger A (1966) J Mol Biol 17:255.CrossRefGoogle Scholar
  29. 29.
    Tiffany ML, Krimm S (1972) Biopolymers 11:2309CrossRefGoogle Scholar
  30. 30.
    Tiffany ML, Krimm S (1968) Biopolymers 6:561Google Scholar
  31. 31.
    Drake AF, Siligardi G, Gibbons WA (1988) Biophys Chem 31:143CrossRefGoogle Scholar
  32. 32.
    Dukor RK, Keiderling TA (1991) Biopolymers 31:1747CrossRefGoogle Scholar
  33. 33.
    Makarov AA, Adzubei IA, Protasevich II, Lobachov VM, Fasman GD (1994) Biopolymers 34:1123CrossRefGoogle Scholar
  34. 34.
    Dölz R, Heidemann E (1986) Biopolymers 25:1069CrossRefGoogle Scholar
  35. 35.
    Thakur S, Vadolas D, Germann HP, Heidemann E (1986) Biopolymers 25:1081CrossRefGoogle Scholar
  36. 36.
    Heidemann E (1987) Das Leder 38:81Google Scholar
  37. 37.
    Brown FR, Carver JP, Blout ER (1969) J Mol Biol 39:307CrossRefGoogle Scholar
  38. 38.
    Greenfield N, Fasman GD (1969) Biochemistry 8:4108CrossRefGoogle Scholar
  39. 39.
    Reddy GL, Nagaraj R (1989) J Biol Chem 264:16591Google Scholar
  40. 40.
    Keller RCA, Killian JA, de Kruijff B (1992) Biochemistry 31:1672CrossRefGoogle Scholar
  41. 41.
    Izard JW, Doughty MB, Kendall DA (1995) Biochemistry 34:9904CrossRefGoogle Scholar
  42. 42.
    Killian JA, Keller RCA, Struyve M, de Kroon AIPM, Tommassen J, de Kruijff B (1990) Biochemistry 29:8131CrossRefGoogle Scholar
  43. 43.
    Fisher WR, Taniuchi H, Anfinsen CB (1973) J Biol Chem 248:3188Google Scholar
  44. 44.
    Eastoe JB (1955) Biochem J 62:589Google Scholar
  45. 45.
    Smith CR (1921) J Am Chem Soc 43:1350CrossRefGoogle Scholar
  46. 46.
    De Wolf FA, Krab K, Visschers RW, de Waard JH, Kraayenhof R (1988) Biochim Biophys Acta 936:487CrossRefGoogle Scholar
  47. 47.
    Yang JT, Wu CSC, Martinez HM (1986) Meth Enzymol 130:209Google Scholar
  48. 48.
    Tatham AS, Drake AF, Shewry PR (1985) Biochem J 226:557Google Scholar
  49. 49.
    Urry DW (1987) J Prot Chem 7:1CrossRefGoogle Scholar
  50. 50.
    Fontenot JD, Tjandra N, Ho C, Andrews PC, Montelaro, RC (1994) J Biomol Struct Dynam 11:821Google Scholar
  51. 51.
    Nouwen N, Tommassen J, de Kruijff B (1994) J Biol Chem 269:16029Google Scholar
  52. 52.
    Shinkai A, Mei LH, Tokuda H, Mizushima S (1991) J Biol Chem 266:5827Google Scholar
  53. 53.
    Creamer LK, Richardson T, Parry DAD (1981) Arch Biochem Biophys 211:689CrossRefGoogle Scholar
  54. 54.
    Farrell HM Jr, Brown EM, Mumosinski TF (1993) Food Struct 12:235Google Scholar
  55. 55.
    Sawyer L, Holt C (1993) J Dairy Sci 76:3062CrossRefGoogle Scholar
  56. 56.
    Holt C, Sawyer L (1993) J Chem Soc Faraday Trans 89:2683CrossRefGoogle Scholar
  57. 57.
    Von Hippel PH, Wong KY (1963) Biochemistry 2:1399CrossRefGoogle Scholar
  58. 58.
    Brodsky B, Li MH, Gwyne Long C, Apigo J, Baum J (1992) Biopolymers 32:447CrossRefGoogle Scholar
  59. 59.
    Venugopal MG, Ramshaw JAM, Braswell E, Zhu D, Brodsky B (1994) Biochemistry 33:7948CrossRefGoogle Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag GmbH & Co. KG 1996

Authors and Affiliations

  • F. A. de Wolf
    • 1
  • R. C. A. Keller
    • 2
  1. 1.Agrotechnological Research Institute (ATO-DLO)WageningenThe Netherlands
  2. 2.Department of Biochemistry of Membranes Centre for Biomembranes and Lipid EnzymologyUniversity of UtrechtUtrechtThe Netherlands

Personalised recommendations