Crystallization in oligomer and copolymer systems comprising lattice incompatible units

  • H.-G. Kilian
Conference paper
Part of the Progress in Colloid & Polymer Science book series (PROGCOLLOID, volume 78)


The presumptions are given on which the thermodynamics of eutectoid oligomer- and copolymer systems is based. It is typical for both systems that crystallization segregation of non-crystallizable chain units occurs on “molecular scales”. Solid solution is therefore possible only by forming crystal lamellae with diffuse basal defect layers. The existence of these inhomogeneous micro-phases is demonstrated. The solid solution is limited to a maximum number of components for thermodynamic reasons. The understanding of isobaric state diagrams and of melting in eutectoid oligomers and copolymers with the aid of thermodynamics includes that chain and colloid structure are related in a fundamental manner. That this holds true in eutectoid oligomers and copolymers is verified by a combined description of caloric melting curves and WAXS- and SAXS-measurements. Some fundamental aspects and problems are discussed.

Key words

Oligomers copolymers multi-component systems thermodynamics melting superstructure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wunderlich B (1973) Macromolecular Physics. Vol 1, Academic Press, New York LondonGoogle Scholar
  2. 2.
    Mandelkern L (1964) Crystallization of Polymers. McGraw-Hill Book Comp, New York San Francisco Toronto LondonGoogle Scholar
  3. 3.
    Flory PJ (1955) Trans Farad Soc 51:848CrossRefGoogle Scholar
  4. 4.
    Wunderlich B (1980) Macromolecular Physics. Vol 3, Academic Press, New York LondonGoogle Scholar
  5. 5.
    Sanchez IC, Eby RK (1973) J Res Nat Bur Std 77A:353Google Scholar
  6. 6.
    Sanchez IC, Eby RK (1975) Macromolecules 8:638CrossRefGoogle Scholar
  7. 7.
    Helfand E, Lauritzen JI Jr (1973) Macromolecules 6:631CrossRefGoogle Scholar
  8. 8.
    Arakawa T, Wunderlich B (1966) J Polym Sci Phys Ed 4:53Google Scholar
  9. 9.
    Bodily D, Wunderlich B (1966) J Polym Sci Phys Ed 4:25Google Scholar
  10. 10.
    Patel GN, Keller A (1975) J Polym Sci Phys Ed 13:1181Google Scholar
  11. 11.
    Baltà Calleja FJ, Hidalgo A (1969) Koll Z Z Polym 229:21CrossRefGoogle Scholar
  12. 12.
    Martinez de Salazar J, Baltà Calleja FJ (1980) J Cryst Growth 48:283CrossRefGoogle Scholar
  13. 13.
    Kortleve G, Tuijnman CAF, Vonk CG (1965) J Polym Sci Phys Ed 10:123Google Scholar
  14. 14.
    Roe RJ, Geniewsky C (1980) J Cryst Growth 48:295CrossRefGoogle Scholar
  15. 15.
    Glenz W, Renvanz B, Wilke W (1972) Koll Z Z Polymere 250:453CrossRefGoogle Scholar
  16. 16.
    Alfonso GC, Fiorina L, Martuscelli E, Pedemonte E, Russo S (1973) Polymer 14:37CrossRefGoogle Scholar
  17. 17.
    Willbourn AH (1959) J Polym Sci 34:569CrossRefGoogle Scholar
  18. 18.
    Buckley GD, Ray NH (1952) J Chem Soc 3701Google Scholar
  19. 19.
    Wunderlich B, Poland D (1963) J Polym Sci Part A1:357Google Scholar
  20. 20.
    Tanaka K (1960) Bull Chem Soc Jpn 33:1060CrossRefGoogle Scholar
  21. 21.
    Baltà Calleja FJ, Rueda DR (1974) Polym J 3:216CrossRefGoogle Scholar
  22. 22.
    Kalepky U, Ficher EW, Herchenröder P (1979) J Polym Sci 17:2117Google Scholar
  23. 23.
    Griskey RG, Foster GN (1970) J Polymer Sci Polym Chem Ed 8:1623CrossRefGoogle Scholar
  24. 24.
    Ke B (1962) J Polym Sci 61:47CrossRefGoogle Scholar
  25. 25.
    Flory PJ, Frij A (1963) Am Chem Soc 85:3548CrossRefGoogle Scholar
  26. 26.
    Unseld K, Asbach GI, Kilian H-G (In preparation)Google Scholar
  27. 27.
    Dulfer, Asbach GI, Kilian H-G (in preparation)Google Scholar
  28. 28.
    Asbach GI, Geiger K (1979) Colloid Polym Sci 257:1094Google Scholar
  29. 29.
    Stracke F (1975) Thesis University of UlmGoogle Scholar
  30. 30.
    Neppert BT (1985) Thesis Universityof UlmGoogle Scholar
  31. 31.
    Kilian H-G (1968) Makromol Chem 116:219CrossRefGoogle Scholar
  32. 32.
    Kilian H-G (1986) Progr Colloid Polym Sci 72:60Google Scholar
  33. 33.
    Hosemann R, Loboda-Cackovic J, Sassoi M, Weick D (1979) Progr Colloid Polym Sci 64:303Google Scholar
  34. 34.
    Glenz W, Kilian HG, Klattenhoff D, Stracke F (1972) Polymer 18:685CrossRefGoogle Scholar
  35. 35.
    Vonk CG (1973) J Appl Cryst 6:819Google Scholar
  36. 36.
    Striebeck N, Ruland W (1978) J Appl Cryst 11:353Google Scholar
  37. 37.
    Heise B, Kilian H-G, Schmidt H (1981) Colloid Polym Sci 259:611CrossRefGoogle Scholar
  38. 38.
    Kilian H-G, Unseld K, Jaeger E, Müller J, Jungnickel B (1985) Colloid Polymer Sci 263:607CrossRefGoogle Scholar
  39. 39.
    Hosemann R, Bagchi SN (1962) Direct Analysis of Diffraction by Matter. North-Holland Publ Comp, AmsterdamGoogle Scholar
  40. 40.
    Rosenberger B, Rodriguez et al, to be publishedGoogle Scholar
  41. 41.
    Kilian H-G (1965) Koll Z Z Polym 202:97CrossRefGoogle Scholar
  42. 42.
    Kilian H-G (1967) Koll Z Z Polym 215:131CrossRefGoogle Scholar
  43. 43.
    Killian H-G (1969) Koll Z Z Polym 231:534CrossRefGoogle Scholar
  44. 44.
    Holl B (1987) Thesis, University of UlmGoogle Scholar
  45. 45.
    to be publishedGoogle Scholar
  46. 46.
    Hoffmann M, Kröner H, Kuhn R (1977) Polymeranalytik I. Georg Thieme Verlag, StuttgartGoogle Scholar
  47. 47.
    Chalmers (1964) Principles of Solidification. Wiley & Sons, New York London SydneyGoogle Scholar
  48. 48.
    Anderson FR (1965) J Polym Sci, Part C 8:275Google Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag GmbH & Co. KG 1998

Authors and Affiliations

  • H.-G. Kilian
    • 1
  1. 1.Abt. Experimentelle Physik Oberer EselsbergUniversität UlmUlmF.R.G.

Personalised recommendations