Advertisement

Description of the freezing-in process in poly(vinyl acetate) based on the meander model

  • W. Heinrich
  • B. Stoll
Conference paper
Part of the Progress in Colloid & Polymer Science book series (PROGCOLLOID, volume 78)

Abstract

The meander model was used to derive molecular parameters from the pressure dependence of the main dielectric relaxation in PVAc. The specific volume and the specific heat capacity of the melt were calculated with the same parameters in agreement with experimental data from the literature and additional experimental data presented here. The validity of the Ehrenfest relations is discussed. For constant cooling rate, it is shown by model calculations, that the product of cooling rate and relaxation time is about 15 K at T g. The relation between the dielectric and the thermodynamic relaxation times are investigated and it is found that they are equal within an uncertainty factor of approximately 2. Mechanical measurements are also presented.

Key words

Poly(vinyl acetate) meander model glass temperature dielectric relaxation mechanical relaxation specific heat capacity specific volume 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ferry JD (1980) Viscoelastic Properties of Polymers. 3rd Ed, Wiley, New YorkGoogle Scholar
  2. 2.
    Pechhold W, Sautter E, v Soden W, Stoll B, Grossmann HP (1979) Makromol Chemistry Suppl 3:247CrossRefGoogle Scholar
  3. 3.
    Heinrich W, Stoll B (1985) Colloid Polym Sci 263:873CrossRefGoogle Scholar
  4. 4.
    Dalal EN, Phillips PJ (1983) Macromolecules 16:890CrossRefGoogle Scholar
  5. 5.
    McKinney JE, Goldstein M (1974) J Res Nat Bur Standards 78A:331Google Scholar
  6. 6.
    Havliček I, Ilavsky M, Hrouz J (1982) J Macromol Sci-Phys B21:425CrossRefGoogle Scholar
  7. 7.
    Kanig G (1969) Kolloid Z Z Polym 233:829CrossRefGoogle Scholar
  8. 8.
    Pechhold W, Stoll B (1982) Polymer Bull 7:413Google Scholar
  9. 9.
    Slater JC (1939) Introduction to Chemical Physics. McGraw Hill, New YorkGoogle Scholar
  10. 10.
    Hartmann B (1976/77) Acustica 36:24Google Scholar
  11. 11.
    Warfield RW (1974) Makromol Chem 175:3285CrossRefGoogle Scholar
  12. 12.
    Asay JR, Lamberson DL, Guenther AH (1969) J Appl Phys 40:1768CrossRefGoogle Scholar
  13. 13.
    Leute U, Grossmann HP (1981) Polymer 22:1335CrossRefGoogle Scholar
  14. 14.
    Brody EM, Lubell CJ, Beatty CL (1975) J Polym Sci, Polym Phys Ed 13:295CrossRefGoogle Scholar
  15. 15.
    Roberts R (1985) Dissertation, SaarbrückenGoogle Scholar
  16. 16.
    Weeger R (1986) University of Ulm, Abt Exp Physik, unpublished resultsGoogle Scholar
  17. 17.
    Gilmor I, Trainor A, Haward RN (1978) J Polym Sci, Polym Phys Ed 16:1291CrossRefGoogle Scholar
  18. 18.
    Carlone C, Hota NK, Stolz HJ, Elbert M, Hochheimer HD (1981) J Chem Phys 75:3220CrossRefGoogle Scholar
  19. 19.
    Boehler R, Kennedy GC (1977) J Appl Phys 48:4183CrossRefGoogle Scholar
  20. 20.
    Pechhold W (1986) University of Ulm, personal communicationGoogle Scholar
  21. 21.
    McCrum NG, Read BE, Williams G (1967) Anelastic and Dielectric Effects in Polymeric Solids. Wiley, New YorkGoogle Scholar
  22. 22.
    Havranek A, Ilavsky M, Nedbal J, Böhm M, v Soden W, Stoll B (1987) Colloid Polym Sci 265:8CrossRefGoogle Scholar
  23. 23.
    Breuer H, Rehage G (1967) Kolloid Z Z Polym 216/217:159CrossRefGoogle Scholar
  24. 24.
    Oels HJ, Rehage G (1977) Macromolecules 10:1036CrossRefGoogle Scholar
  25. 25.
    Stavermann AJ (1966) Rheol Acta 5:283CrossRefGoogle Scholar
  26. 26.
    Donth EJ (1981) Glasübergang. Akademie-Verlag, BerlinGoogle Scholar
  27. 27.
    Davies RO, Jones GO (1953) Adv Phys 2:370CrossRefGoogle Scholar
  28. 28.
    Schwarzl FR, Zahradnik F (1980) Rheol Acta 19:137CrossRefGoogle Scholar
  29. 29.
    Bittrich HJ, Schad HJ, Tanneberger H (1982) Acta Polymerica 33:736CrossRefGoogle Scholar
  30. 30.
    Greiner R, Schwarzl FR (1984) Rheol Acta 23:378CrossRefGoogle Scholar
  31. 31.
    Havliček I, Vojta V, Ilavsky M, Hrouz J (1980) Macromolecules 13:357CrossRefGoogle Scholar
  32. 32.
    Richardson MJ, Savill NG (1975) Polymer 16:753CrossRefGoogle Scholar
  33. 33.
    Volkenstein MV, Ptitsyn OB (1956) zh techn fiz 26:2204Google Scholar
  34. 34.
    Bakule R (1987) Charles University of Prague, personal communicationGoogle Scholar
  35. 35.
    Wunderlich B, Bodily DM, Kaplan MH (1964) J Appl Phys 35:95CrossRefGoogle Scholar
  36. 36.
    Wolpert SM, Weitz A, Wunderlich B (1971) J Polym Sci A-2 9:1887CrossRefGoogle Scholar
  37. 37.
    Hutchinson JM, Kovacs AJ (1976) J Polym Sci, Polym Phys Ed 14:1575CrossRefGoogle Scholar
  38. 38.
    Kovacs AJ, Aklonis JJ, Hutchinson JM (1979) J Polym Sci, Polym Phys Ed 17:1097CrossRefGoogle Scholar
  39. 39.
    Sasabe H, Moynihan CT (1978) J Polym Sci, Polym Phys Ed 16:1447CrossRefGoogle Scholar
  40. 40.
    Kovacs AJ (1963) Fortschr Hochpolym Forsch 3:394Google Scholar
  41. 41.
    Brather A, Link G, Luchschneider R (1980) Colloid Polym Sci 258:1307CrossRefGoogle Scholar
  42. 42.
    Broens O, Müller FH (1955) Kolloid Z Z Polym 140:121Google Scholar
  43. 43.
    Saito S, Nakajima T (1959) J Appl Polym Sci 2:93CrossRefGoogle Scholar
  44. 44.
    Matsuoka S, Williams G, Johnson GE, Anderson EW, Furukawa T (1985) Macromolecules 18:2652CrossRefGoogle Scholar
  45. 45.
    Matsuoka S (1986) J Rheol 30:869CrossRefGoogle Scholar
  46. 46.
    Koppelmann J, Leder H, Royer F (1979) Colloid Polym Sci 257:673CrossRefGoogle Scholar
  47. 47.
    Schlosser E (1982) Polymer Bull 8:461CrossRefGoogle Scholar
  48. 48.
    Weitz A, Wunderlich B (1974) J Polym Sci, Polym Phys Ed 12:2473CrossRefGoogle Scholar
  49. 49.
    Wetton RE, Moneypenny HG (1975) British Polymer J 7:51CrossRefGoogle Scholar
  50. 50.
    Brown IG, Wetton RE (1978) Polymer 19:659CrossRefGoogle Scholar
  51. 51.
    Kogovski GJ, Filisko FE (1986) Macromolecules 19:829Google Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag GmbH & Co. KG 1998

Authors and Affiliations

  • W. Heinrich
    • 1
  • B. Stoll
    • 1
  1. 1.Abt. Angewandte PhysikUniversität UlmUlmF.R.G.

Personalised recommendations