Advertisement

Flexoelectric effect in elastomers

  • M. Marvan
  • A. Havránek
Conference paper
Part of the Progress in Colloid & Polymer Science book series (PROGCOLLOID, volume 78)

Abstract

Electric polarization induced by a nonhomogeneous deformation field — flexoelectricity — has been investigated in elastomers. A simple model of dipole orientation mechanism controlled by anisotropic free volume is given. The order of magnitude of the polarization to the deformation gradient ratio β predicted by the model is β ∼ 10−11 C/m. Deformation gradient was experimentally realized in a truncated pyramid cut from elastomers stressed by axial pressure. Voltage difference between the bases of the pyramids approximately proportional to the deformation gradient and depending on the direction of the gradient has been observed. The β values calculated from these experiments have the order of magnitude 10−11 or 10−11 C/m.

Key words

Electric polarization nonhomogeneous deformation flexoelectricity bending piezoelectricity elastomers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mason WP (1950) Piezoelectric Crystals and Their Application to Ultrasonic. van Nostrand, New York Toronto LondonGoogle Scholar
  2. 2.
    Kogan ShM (1963) Fiz Tverd Tela (Leningrad) 5:2829, Sov Phys Solid State 5:2069Google Scholar
  3. 3.
    Indenbom VL, Loginov EB, Osipov MA (1981) Kristalografiya (in Russian) 26:1157Google Scholar
  4. 4.
    Tagantsev AK (1985) Zh Exp Teor Fiz 88:2108, Sov Phys YETP 61:1246Google Scholar
  5. 5.
    Tagantsev AK (1986) Phys Rev B 34:588CrossRefGoogle Scholar
  6. 6.
    Lushcheikin GA (1984) Polymernye Elektrety (in Russian), Khimiya, MoscowGoogle Scholar
  7. 7.
    Sessler GM (ed) (1981) Electrets. Springer, BerlinGoogle Scholar
  8. 8.
    Takamatsu T, Tian RW, Sasabe H (1985) In: Sesseler GM, Gerhardt-Multhaupt R (eds) Proceedings of the 5th International Symposium on Electrets, Heidelberg 1985 (Available from IEEE Service Center, Piscataway, NJ, USA), p 942Google Scholar
  9. 9.
    Flory PJ (1969) Statistical Mechanics of Chain Molecules, Wiley, New York LondonGoogle Scholar
  10. 10.
    Bueche F (1962) Physical Properties of Polymers. Wiley, New York LondonGoogle Scholar
  11. 11.
    Prokšová J (1986) Thesis, Faculty of Mathematics and Physics, Charles University, PragueGoogle Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag GmbH & Co. KG 1998

Authors and Affiliations

  • M. Marvan
    • 1
    • 2
  • A. Havránek
    • 1
  1. 1.Department of Polymer PhysicsCharles UniversityPargueCzechoslovakia
  2. 2.Department of Polymer PhysicsMFF UKPraha 8Czechoslovakia

Personalised recommendations