Advertisement

Study of the adsorption of organic molecules on clay colloids by means of a fluorescent probe

  • K. Viaene
  • M. Crutzen
  • B. Kuniyma
  • R. a. Schoonheydt
  • F. C. De Schryver
Interfaces
Part of the Progress in Colloid & Polymer Science book series (PROGCOLLOID, volume 76)

Abstract

The adsorption and distribution of molecules on a clay surface has been investigated by means of fluorescent probes, containing pyrene as chromophore and trimethyl ammonium head group, with varying chain length.

After adsorption, in aqueous media, these molecules form clusters on the surface, resulting in ground state interactions and an efficient excimer formation. The lack of these intermolecular interactions in organic media suggests that hydrophobic interactions are the driving force for this clustering.

Co-adsorbed detergent molecules influence the distribution of the probe molecules, at least when the chain length of the detergent is the same as the total length of the probe. For each probe, a so-called “critical chain length” exists, for the detergents to be able to destroy the probe clusters.

Excimer formation has proved to be a good tool to gain additional information on the adsorption process. It was found that excimer formation on the interlamellar surface is less efficient then excimer formation on the external surface. Also, redistribution and exchange phenomena of the adsorbed probe molecules have been observed by studying excimer emission.

Key words

Clays fluorescence pyrene detergents 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdo S, Canesson P, Cruz M, Fripiat JJ, Van Damme H (1981) J Phys Chem 85:797CrossRefGoogle Scholar
  2. 2.
    Della Guardia RA, Thomas JK (1983) J Phys Chem 87:990CrossRefGoogle Scholar
  3. 3.
    Della Guardia RA, Thomas JK (1984) J Phys Chem 88:964CrossRefGoogle Scholar
  4. 4.
    Della Guardia RA, Thomas JK (1983) J Phys Chem 87:3550CrossRefGoogle Scholar
  5. 5.
    Ghosh PK, Bard AJ (1984) J Phys Chem 88:5519CrossRefGoogle Scholar
  6. 6.
    Habti A, Keravis D, Levitz P, Van Damme H (1984) J Chem Soc Faraday Trans 2, 80:67CrossRefGoogle Scholar
  7. 7.
    Nakamura T, Thomas JK (1985) Langmuir 1:568CrossRefGoogle Scholar
  8. 8.
    Nakamura T, Thomas JK (1987) Langmuir 3:234CrossRefGoogle Scholar
  9. 9.
    Nakamura T, Thomas JK (1986) J Phys Chem 90:641CrossRefGoogle Scholar
  10. 10.
    Schoonheydt RA, De Pauw P, Vliers D, De Schryver FC (1984) J Phys Chem 88:5113CrossRefGoogle Scholar
  11. 11.
    Viaene K, Ji C, Schoonheydt RA, De Schryver FC (1987) Langmuir 3:107CrossRefGoogle Scholar
  12. 12.
    Theng B (1978) The Chemistry of Clay-Organic Reactions. Adam Hilger, LondonGoogle Scholar
  13. 13.
    Mineralogical Society monograph, no 6 (1987) Chemistry of clays and clay minerals. Newman ACD, LondonGoogle Scholar
  14. 14.
    Viaene K, Schoonheydt RA, Crutzen M, Kunyima B, De Schryver FC (1988) Langmuir 4:749CrossRefGoogle Scholar
  15. 15.
    Verbeeck A, Ph D Thesis KU Leuven (1987)Google Scholar
  16. 16.
    Wellner E, Ottolenghi M, Avnir D, unpublished resultsGoogle Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag GmbH & Co. KG 1988

Authors and Affiliations

  • K. Viaene
    • 1
  • M. Crutzen
    • 1
  • B. Kuniyma
    • 1
  • R. a. Schoonheydt
    • 2
  • F. C. De Schryver
    • 1
    • 2
  1. 1.Department of ChemistryLeuvenBelgium
  2. 2.Laboratorium voor Oppervlakte ScheikundeLeuvenBelgium

Personalised recommendations