Advertisement

Selective incorporation of dyes with fluorocarbon and hydrocarbon chains into coexisting micellar phases of sodium perfluorooctanoate and dimethyl tetradecyl aminoixde

  • F. H. Haegel
  • H. Hoffmann
Amphiphile Solutions
Part of the Progress in Colloid & Polymer Science book series (PROGCOLLOID, volume 76)

Abstract

Abstract

Solutions of sodium perfluorooctanoate (SPFO) and dimethyl tetradecyl aminoxide (TDMAO) show a miscibility gap which can be determined by surface tension measurements. Within this demixing region, the initially clear viscous solutions are metastable and split after some weeks into two phases of which the lower one is very turbid and contains a lamellar phase.

In metastable solutions, two kinds of micelles coexist. This is shown by contrast variation in light scattering using water-glycerol mixtures. The necessary premise that there is no basic difference between solutions in water and water-glyerol 50 : 50 w/w was proved by 19F-NMR measurements.

Both kinds of aggregates can be stained slectively by corresponding cyanine dyes. When phase separation occurs, the lower perfluorosurfactant-rich phase contains mainly fluorinated dye, whereas in the upper phase the normal dye is enriched. The phase separation can be accelerated by ultracentrifugation.

Coexisting micellar aggregates can be used for the spatial segregation of two photosystems which are necessary to drive photolytic water splitting by a two-photon process.

Key words

Micelles sodium perfluorooctanoate dimethyl tetradecyl aminoxide miscibility gap centrifugation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Burkitt SJ, Ottewill RH, Hayter JB, Ingram BT (1987) Colloid Polym Sci 265:628–636CrossRefGoogle Scholar
  2. 2.
    Funasaki N, Hada S (1980) J Phys Chem 84:736–744CrossRefGoogle Scholar
  3. 3.
    Carlfors J, Stilbs P (1984) J Phys Chem 88:4410–4414CrossRefGoogle Scholar
  4. 4.
    Asakawa T, Miyagishi S, Nishida M (1987) Langmuir 3(5)821:827CrossRefGoogle Scholar
  5. 5.
    Mukerjee P, Mysels KJ (1975) Colloidal Dispersions and Micellar Behavior. The American Chemical Society Symposium 9:239–252Google Scholar
  6. 6.
    Mukerjee P, Yang AYS (1976) J Phys Chem 80:1388–1390CrossRefGoogle Scholar
  7. 7.
    Bauernschmitt D, Hoffmann H (1980) Makromol Chem 181:2365–2384CrossRefGoogle Scholar
  8. 8.
    Shinoda K, Nomura T (1980) J Phys Chem 84:365–369CrossRefGoogle Scholar
  9. 9.
    Funasaki N, Hada S (1983) J Phys Chem 87:342–347CrossRefGoogle Scholar
  10. 10.
    Kunitake T, Tawaki S, Nakashima N (1983) Bull Chem Soc Jpn 56:3235–3242CrossRefGoogle Scholar
  11. 11.
    Asakawa T, Johten K, Miyagishi S. Nishida M (1985) Langmuir 1:347–351CrossRefGoogle Scholar
  12. 12.
    Asakawa T, Miyagishi S, Nishida M (1985) J Colloid Interface Sci 104:279–281CrossRefGoogle Scholar
  13. 13.
    Treiner C, Bocquet J-F, Pommier C (1986) J Phys Chem 90:3052–3054CrossRefGoogle Scholar
  14. 14.
    Pletnev MY, Remizov YV, Frolov YG (1986) Kolloidnyi Zhurnal 48(1):103–107; (1986) Colloid USSR Engl Transl 48(1):81–85Google Scholar
  15. 15.
    Hoffmann H, Oetter G, Schwander B (1987) Progr Colloid Polym Sci 73:95–106CrossRefGoogle Scholar
  16. 16.
    Shelton RS, van Campen MG, tilford CH, Lang HC, Nisonger L, Bandelin FJ, Rubenkoenig HL (1946) J Am Chem Soc 68:747–759CrossRefGoogle Scholar
  17. 17.
    Clemo GR, Swan GA (1922) J Chem Soc 121:946–947Google Scholar
  18. 18.
    Schorr W, Hoffmann H (1981) J Phys Chem 85:3160–3167CrossRefGoogle Scholar
  19. 19.
    Rubingh DN (1979) In: Mittal KL (ed) Solution Chemistry of Surfactants. Vol 1, Plenum Press, New York, pp 337–354Google Scholar
  20. 20.
    Rosen MJ, Friedman D, Gross M (1964) J Phys Chem 68(11):3219–3225CrossRefGoogle Scholar
  21. 21.
    Muller M, Birkhahn RH (1968) J Phys Chem 72:583–588CrossRefGoogle Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag GmbH & Co. KG 1988

Authors and Affiliations

  • F. H. Haegel
    • 1
  • H. Hoffmann
    • 1
  1. 1.Lehrstuhl für Physikalische Chemie IUniversität BayreuthBayreuthF.R.G.

Personalised recommendations