Advertisement

Dynamics in microemulsions with nonionic surfactant. A combined NMR relaxation and self-diffusion study

  • U. Olsson
  • M. Jonströmer
  • K. Nagai
  • O. Söderman
  • H. Wennerström
  • G. Klose
Amphiphile Solutions
Part of the Progress in Colloid & Polymer Science book series (PROGCOLLOID, volume 76)

Abstract

Data on molecular self-diffusion and 2H-NMR relaxation, on deuterons specifically attached to the surfactant molecule, are presented for two ternary microemulsion systems with nonionic surfactant, covering the whole range of water to oil ratios. In one of the systems, the hydrophobic solvent was made up by a 1:1 by weight mixture of cyclohexane and hexadecane. By comparing the diffusion coefficients of the two hydrocarbons, conclusions are drawn concerning the dominating diffusion process of the hydrocarbon molecules. A marked temperature dependence of the self-diffusion properties, as well as in the relaxation parameters, is observed. Of particular interest are the dramatic changes occuring at low oil content within a narrow temperature interval. There, at lower temperatures, swollen micelles are identified that grow in size with increasing temperature. At higher temperatures, data suggest that rapid coalescence and breakup of aggregates provide a mechanism for the macroscopic transport of oil molecules, resulting in a marked increase of the hydrocarbon diffusion coefficient.

Key words

Microemulsions nonionic surfactant 2H-NMR-Relaxation self-diffusion study phase-behavior transition effects coalescence of aggregates break up of aggregates 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kahlweit M, Strey R, Haase D, Kunieda H, Schmeling T, Faulhaber B, Borkovec MJ, Eicke H-F, Busse G, Eggers F, Funck Th, Richmann H, Magid LJ, Söderman O, Stilbs P, Winkler J, Dittrich A, Jahn W (1987) J Colloid Interface Sci 118:436CrossRefGoogle Scholar
  2. 2.
    Bodet J-F, Bellare JR, Davis HT, Scriven LE, Miller WG (1988) J Phys Chem 92:1898CrossRefGoogle Scholar
  3. 3.
    Jahn W, Strey R (1987): In: Meunier J, Langevin D, Boccara N (eds) Physics of Amphifilic Layers, Springer Proceedings in Physics. vol 21, HeidelbergGoogle Scholar
  4. 4.
    Nilsson P-G, Lindman B (1982) J Phys Chem 86:271CrossRefGoogle Scholar
  5. 5.
    Olsson U, Shinoda K, Lindman B (1986) J Phys Chem 90:4083CrossRefGoogle Scholar
  6. 6.
    Scriven LE (1976) Nature 263:123CrossRefGoogle Scholar
  7. 7.
    Olsson U, Nagai K, Wennerström H (1988) J Phys Chem, in pressGoogle Scholar
  8. 8.
    Lindman B, Söderman O, Wennerström H (1987) In: Zana R (ed) Novel Techniques to Investigate Surfactant Solutions. Dekker, New York, p 295Google Scholar
  9. 9.
    Abragam A (1961) The Principles of Nuclear Magnetism. Clarendon, OxfordGoogle Scholar
  10. 10.
    Wennerström H, Lindblom G, Lindman B (1974) Chem Scr 6:97Google Scholar
  11. 11.
    Wennerström H, Lindman B, Söderman O, Drakenberg T, Rosenholm JB (1979) J Am Chem Soc 101:6860CrossRefGoogle Scholar
  12. 12.
    Halle B, Wennerström H (1981) J Chem Phys 75:1928CrossRefGoogle Scholar
  13. 13.
    Kunieda H, Shinoda K (1982) J Dispersion Sci Technol 3:233CrossRefGoogle Scholar
  14. 14.
    Shinoda K (1983) Prog Colloid Polym Sci 68:1CrossRefGoogle Scholar
  15. 15.
    Shinoda K, Kunieda H, Arai T, Saijo H (1984) J Phys Chem 88:5126CrossRefGoogle Scholar
  16. 16.
    Kahlweit M, Strey R (1985) Angew Chem 24:654CrossRefGoogle Scholar
  17. 17.
    Kahlweit M, Lessner E, Strey R (1983) J Phys Chem 87:5032CrossRefGoogle Scholar
  18. 18.
    Kahlewit M, Strey R, Firman P, Haase D (1985) Langmuir 1:281CrossRefGoogle Scholar
  19. 19.
    Talmon Y, Prager S (1978) J Chem Phys 69:2984CrossRefGoogle Scholar
  20. 20.
    Anderson DM (1986) Ph D Thesis, Univ of Minnesota, MinneapolisGoogle Scholar
  21. 21.
    Zemb TN, Hyde ST, Derian P-J, Barnes I, Ninham BW (1987) J Phys Chem 91:3815CrossRefGoogle Scholar
  22. 22.
    Bennett KE, Hatfield JC, Davis HT, Macosko CW, Scriven LE (1982) In: Robb ID (ed) Microemulsions. Plenum, New York, p 65Google Scholar
  23. 23.
    Jönsson B, Wennerström H, Nilsson P-G, Linse P (1986) Colloid Polym Sci 264:77CrossRefGoogle Scholar
  24. 24.
    Nilsson P-G, Wennerström H, Lindman B (1983) J Phys Chem 87:1377CrossRefGoogle Scholar
  25. 25.
    Lindblom G, Wennerström H (1977) Biophys Chem 6:617CrossRefGoogle Scholar
  26. 26.
    Karlström G (1985) J Phys Chem 89:4962CrossRefGoogle Scholar
  27. 27.
    Lindman B, Karlström G (1987) Z Phys Chem 155:199Google Scholar
  28. 28.
    Ahlnäs T, Karlström G, Lindman B (1987) J Phys Chem 91:4030CrossRefGoogle Scholar
  29. 29.
    Claesson P, Kjellander R, Stenius P, Christensson H (1986) J Chem Soc Trans 1 82:2735CrossRefGoogle Scholar
  30. 30.
    Nilsson P-G, Wennerström H, Lindman B (1985) Chem Scr 25:67Google Scholar
  31. 31.
    Kaler EW, Prager S (1982) J Colloid Interface Sci 86:359CrossRefGoogle Scholar
  32. 32.
    Michels WF (1986) Ph D Thesis, Univ of Minnesota, MinneapolisGoogle Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag GmbH & Co. KG 1988

Authors and Affiliations

  • U. Olsson
    • 1
  • M. Jonströmer
    • 1
  • K. Nagai
    • 2
  • O. Söderman
    • 1
  • H. Wennerström
    • 1
  • G. Klose
    • 3
  1. 1.Physical Chemistry 1 Chemical CenterUniversity of LundLundSweden
  2. 2.Faculty of EngineeringNagasaki UniversityNagasakiJapan
  3. 3.Sektion PhysikKarl-Marx UniversitätLeipzigDDR

Personalised recommendations