Charge carrier dynamics in colloidal semiconductors

  • H. Weller
  • M. Haase
  • L. Spanhel
  • A. Henglein
Part of the Progress in Colloid & Polymer Science book series (PROGCOLLOID, volume 76)


Charge carriers on colloidal semiconductors were characterized by their optical absorption spectra. They were produced in a laser flash or by means of pulse radiolysis whereby the reactions of these charge carriers could be followed. In a biphotonic process, hydrated electrons were formed from CdS. After covering the surface with Cd[OH]2, the fluorescence of the particles appeared at the band edge with a quantum yield of more than 0.5 and the photochemical stability was enhanced by several orders of magnitude to become comparable to that of fluorescence dyes, like rhodamine. Colloids of CdS or Cd3P2 could be attached to TiO2 or ZnO, respectively. In these sandwich colloids an electron transfer occurred from the exicited CdS or Cd3P2 to the TiO2 or ZnO part, whereas the positive holes remained in the excited part of the sandwich.

Key words

Photochemistry colloidal semiconductors charge carriers surface modification sandwich-colloid 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Henglein A (1982) Ber Bunsenges Phys Chem 86:301Google Scholar
  2. 2.
    Henglein A, Fojtik A, Weller H (1987) Ber Bunsenges Phys Chem 91:441Google Scholar
  3. 3.
    Ramsden JJ, Grätzel M (1984) J Chem Soc Faraday Trans I 80:919CrossRefGoogle Scholar
  4. 4.
    Nozik AJ, Williams F, Nenadovic MT, Rajh T, Micic OI (1985) J Phys Chem 89:397CrossRefGoogle Scholar
  5. 5.
    Brus L (1986) J Phys Chem 90:2555CrossRefGoogle Scholar
  6. 6.
    Nedeljkovic JM, Nenadovic MT, Micic OI, Nozik AJ (1986) J Phys Chem 90:12CrossRefGoogle Scholar
  7. 7.
    Kuczynski J, Thomas JK (1983) J Phys Chem 87:5498CrossRefGoogle Scholar
  8. 8.
    Weller H, Schmidt HM, Koch U, Fojtik A, Baral S, Henglein A, Kunath W, Weiss K, Dieman E (1986) Chem Phys Lett 124:557CrossRefGoogle Scholar
  9. 9.
    Baral S, Fojtik A, Weller H, Henglein A (1986) J Am Chem Soc 108:375CrossRefGoogle Scholar
  10. 10.
    Spanhel L, Haase M, Weller H, Henglein A (1987) J Am Chem Soc 109:5649CrossRefGoogle Scholar
  11. 11.
    Henglein A, Kumar A, Janata E, Weller H (1987) Chem Phys Lett 132:133CrossRefGoogle Scholar
  12. 12.
    Albery WJ, Brown GT, Darwent JR, Saievar-Iranizad E (1985) J Chem Soc Faraday Trans I 81:1999CrossRefGoogle Scholar
  13. 13.
    Haase M, Weller H, Henglein A (1988) J Phys Chem, in pressGoogle Scholar
  14. 14.
    Alfassi Z, Bahnemann D, Henglein A (1982) J Phys Chem 86:4656CrossRefGoogle Scholar
  15. 15.
    Spanhel L, Weller H, Henglein A (1987) J Am Chem Soc 109:6632CrossRefGoogle Scholar
  16. 16.
    Spanhel L, Weller H, Henglein A (1987) Ber Bunsenges Phys Chem 91:1359Google Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag GmbH & Co. KG 1988

Authors and Affiliations

  • H. Weller
    • 1
  • M. Haase
    • 1
  • L. Spanhel
    • 1
  • A. Henglein
    • 1
  1. 1.Hahn-Meitner-Institut Bereich StrahlenchemieBerlin 39F.R.G.

Personalised recommendations