Skip to main content

Kinetic and spectroscopic properties of small colloids of metal iodide semiconductors

  • Colloids
  • Conference paper
  • First Online:
Trends in Colloid and Interface Science II

Part of the book series: Progress in Colloid & Polymer Science ((PROGCOLLOID,volume 76))

Abstract

Small colloidal HgI2, PbI2 and AgI particles (with particle diameters in the range 20–50 Å), were prepared in water and acetonitrile, and optical effects due to size quantization were observed. A simple method for the preparation of colloids was used to avoid the possibility of the formation of complexes or other conflicting absorbing species in solution. Colloids of HgI2 were prepared by simple agglomeration of HgI2 monomeric molecules. The PbI2 colloid formation in the solution of crystalline powder dissolved in acetonitrile was studied as well. Small colloids of AgI were prepared by reaction of silver salt with iodide in stochiometric ratio. AgI colloids were also incorporated in transparent silicate glass. Electron transfer reactions from electron donors to AgI particles in aqueous solutions were studied by pulse radiolysis technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albery WJ, Brown GT, Darwent JR, Saievar-Iranizad E (1985) J Chem Soc Faraday Trans 1 81:1999

    Article  CAS  Google Scholar 

  2. Balchin AA (1980) In: Levy I (ed) Crystallography and Crystal Chemistry of Materials with Layered Structures, Vol 2. D Reidel Pub Co, Dorderecht, p 31

    Google Scholar 

  3. Baral S, Fojtik A, Weller H, Henglein A (1986) J Am Chem Soc 108:375

    Article  CAS  Google Scholar 

  4. Bedikyan LD, Miloslavskii VK, Ageev A (1979) Opt Spectros 47:225

    Google Scholar 

  5. Berry CR (1967) Phys Rev 161:611

    Article  Google Scholar 

  6. Brus LE (1986) J Phys Chem 90:2555 and references therein

    Article  CAS  Google Scholar 

  7. Burstein E (1954) Phys Rev 93:632

    Article  CAS  Google Scholar 

  8. DiSalvo FJ (1974) In: Timmerhaus KD, Sullivan WJ, Hammel EF (eds) Low Temperature Physics LT-13, Vol 3. PLenum Press, New York, p 417

    Google Scholar 

  9. Fojtik A, Weller H, Koch V, Henglein A (1984) Ber Bunsenges Phys Chem 88:649

    Google Scholar 

  10. Griffiths TR, Anderson RA (1979) J Chem Soc, Faraday Trans 2, 75:957 and references therein

    Article  CAS  Google Scholar 

  11. Harbeke G, Tossani E (1975) RCA Rev 36:40

    CAS  Google Scholar 

  12. Henglein A (1983) In: Baxendale Memorial Symposium, Consiglio Nazionale delle Richerche, Instituto di Fotochimica e Radiazioni’ Alta Energia, Centro Stampa, Lo Scarabeo, Bologna, pp 43–58

    Google Scholar 

  13. Henglein A, Kumar A, Janata E, Weller H (1986) Chem Phys Lett 132:133

    Article  CAS  Google Scholar 

  14. Johnston FJ (1978) Rad Res 75:286

    Article  CAS  Google Scholar 

  15. Kamat PV, Dimitrijevic NM, Fessender RW (1987) J Phys Chem 91:396

    Article  CAS  Google Scholar 

  16. Micic OI, Nenadovic MT, Peterson MW, Nozik AJ (1987) J Phys Chem 91:1295

    Article  CAS  Google Scholar 

  17. Micic OI, Zongguan L, Mills G, Sullivan JC, Meisel D (1987) J Phys Chem, in press

    Google Scholar 

  18. Nenadovic MT, Rajh T, Herak R, Micic OI, Paterson MW, Nozik AJ (1988) J Phys Chem 92:1400

    Article  Google Scholar 

  19. Nozik AJ, Williams F, nenadovic MT, Rajh T, Micic OI (1985) J Phys Chem 89:397

    Article  Google Scholar 

  20. Peterson MW, Micic OI, Nozik AJ (1988)J Phys Chem, to be published

    Google Scholar 

  21. Rajh T, Peterson MW, Turner JA, Nozik AJ (1984) J Electroanal Chem 228:55

    Article  Google Scholar 

  22. Rajh T, Vucemilovic MI, Dimitrijevic NM, Micic OI (1988) Chem Phys Lett 143(3):305

    Article  CAS  Google Scholar 

  23. Rossetti R, Nakahara S, Brus LE (1983) J Chem Phys 79:1096

    Article  Google Scholar 

  24. Sandroff CJ, Hwang DM, Chung WM (1986) Phys Rev B 33:5953

    Article  CAS  Google Scholar 

  25. Sandroff CJ, Kelty SP, Hwang DM (1986) J Chem Phys 85:5337

    Article  CAS  Google Scholar 

  26. Tanaka T, Saigo H, Matsubara TJ (1982) PHotogr Sci 26:92

    Google Scholar 

  27. Van Olphen H (1977) An Introduction to Clay Colloid Chemistry. J Wiley, New York

    Google Scholar 

  28. Wang Y, Herron N (1987) J Phys Chem 91:5005

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

V. Degiorgio

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Dr. Dietrich Steinkopff Verlag GmbH & Co. KG

About this paper

Cite this paper

Micic, O.I., Nenadovic, M.T., Rajh, T., Nedeljkovic, J.M., Vucemilovic, M.I. (1988). Kinetic and spectroscopic properties of small colloids of metal iodide semiconductors. In: Degiorgio, V. (eds) Trends in Colloid and Interface Science II. Progress in Colloid & Polymer Science, vol 76. Steinkopff. https://doi.org/10.1007/BFb0114162

Download citation

  • DOI: https://doi.org/10.1007/BFb0114162

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-7985-0777-7

  • Online ISBN: 978-3-7985-1693-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics