Skip to main content

Sedimentation studies of specific association of oligonucleosomes from sea urchin sperm chromatin

  • Conference paper
  • First Online:
Book cover Analytical Ultracentrifugation

Part of the book series: Progress in Colloid & Polymer Science ((PROGCOLLOID,volume 99))

  • 127 Accesses

Abstract

It is known that oligonucleosomal chromatin fragments from chicken erythrocytes enriched in inactive genes can self-associate into pseudo-higher-order structures. In this paper, we demonstrate the similar aggregation phenomenon for another type of repressed cells, sea urchin spermatozoa. Like the inactive part of erythrocyte chromatin, sea urchin sperm chromatin is characterized by the long linker DNA (100 base pairs) and the presence of specific histones typical for the repressed state of chromatin. It seems that these two factors determine the specific association of oligonucleosomes. The aggregates of sea urchin sperm oligonucleosomes resemble those of the erythrocyte chromatin in the following features: the range of the sizes of oligonucleosomes that are able to associate into pseudo-higher-order structures is limited; such self-association takes place at a low extent of the chromatin digestion by micrococcal nuclease; the aggregates undergo salt-induced compaction. Similarity in the properties of chromatin aggregates from two types of terminally repressed cells makes it possible to consider the specific association into pseudo-higher-order structures as a characteristic feature of chromatin from the inactive part of the genome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Renz M (1979) Nucl Acids Res 6:2761–2767

    Article  CAS  Google Scholar 

  2. Ruiz-Carillo A, Puigdomenech P, Eder G, Lurz R (1980) Biochemistry 19:2544–2554

    Article  Google Scholar 

  3. Stratling W, Klingholz R (1981) Biochemistry 20:1386–1392

    Article  CAS  Google Scholar 

  4. Puigdomenech P, Ruiz-Carrillo A (1982) Biochim Biophys Acta 696:267–274

    CAS  Google Scholar 

  5. Thomas JO, Rees C, Pearson E (1985) Eur J Biochem 147:143–151

    Article  CAS  Google Scholar 

  6. Thomas JO, Rees C (1983) Eur J Biochem 134:109–115

    Article  CAS  Google Scholar 

  7. Muyldermans S, Lasters I, Hamers R, Wyns L (1985) Eur J Biochem 150:441–446

    Article  CAS  Google Scholar 

  8. Weintraub H (1984) Cell 38:17–27

    Article  CAS  Google Scholar 

  9. Grigoryev S, Spirin K, Krasheninnikov I (1990) Nucl Acids Res 18:7397–7406

    Article  CAS  Google Scholar 

  10. Kamakaka RT, Thomas JO (1990) EMBO J 9:3997–4006

    CAS  Google Scholar 

  11. Osipova TN, Karpova EV, Konditerov SV, Vorob'ev VI (1990) Molec Biol 24:69–78

    CAS  Google Scholar 

  12. Zalenskaya IA, Pospelov VA, Zalensky AO, Vorob'ev VI (1981) Nucl Acids Res 9:473–486

    Article  CAS  Google Scholar 

  13. Von Holt C, Strickland WN, Brandt WF, Strickland MS (1979) FEBS Lett 100:201–218

    Article  Google Scholar 

  14. Vorob'ev VI, Karpova EV, Osipova TN (1994) Biorheology 31:221–234

    Google Scholar 

  15. Van Holde KE (1989) Chromatin, Springer-Verlag, New York, pp 355–356

    Google Scholar 

  16. Osipova TN, Karpova EV, Vorob'ev VI (1990) J Biomol Structure & Dynamics 8:11–22

    CAS  Google Scholar 

  17. Osipova TN, Karpova EV, Ramm EI, Svetlikova SB, Poselov VA (1986) Molec Biol 20:853–861

    CAS  Google Scholar 

  18. Butler PJG, Thomas JO (1980) J Mol Biol 140:505–529

    Article  CAS  Google Scholar 

  19. Thomas JO, Rees C, Butler PJG (1986) Eur J Biochem 154:343–348

    Article  CAS  Google Scholar 

  20. Hill CS, Rimmer JM, Green BN, Finch JT, Thomas JO (1991) EMBO J 10:1939–1948

    CAS  Google Scholar 

  21. Clark DJ, Thomas JO (1988) Eur J Biolchem 178:225–233

    Article  CAS  Google Scholar 

  22. Osipova TN, Triebel H, Bar H, Zalenskaya IA, Hartmann M (1985) Molec Biol Rep 10:153–158

    Article  CAS  Google Scholar 

  23. Osipova TN, Vorob'ev VI, Bottger M, Von Mickwitz C-U, Scherneck S (1982) Molec Biol Rep 8:71–75

    Article  CAS  Google Scholar 

  24. Bates DL, Thomas JO (1981) Nucl Acids Res 9:5883–5894

    Article  CAS  Google Scholar 

  25. Kamakaka RT, Thomas JO (1990) EMBO J 9:3997–4006

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. Behlke

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Dr. Dietrich Steinkopff Verlag GmbH & Co. KG

About this paper

Cite this paper

Karpova, E.V., Osipova, T.N., Vorob’ev, V.I. (1995). Sedimentation studies of specific association of oligonucleosomes from sea urchin sperm chromatin. In: Behlke, J. (eds) Analytical Ultracentrifugation. Progress in Colloid & Polymer Science, vol 99. Steinkopff. https://doi.org/10.1007/BFb0114070

Download citation

  • DOI: https://doi.org/10.1007/BFb0114070

  • Received:

  • Published:

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-7985-1038-8

  • Online ISBN: 978-3-7985-1666-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics