Skip to main content

Das coenzym a und seine biologischen funktionen

  • Conference paper
  • First Online:
Ergebnisse der physiologie biologischen chemie und experimentellen pharmakologie

Part of the book series: Ergebnisse der Physiologie, biologischen Chemie und experimentellen Pharmakologie ((ERGEBPHYSIOL,volume 49))

  • 19 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Ackermann, W. W., and W. Shive: α-Amino-β,β-dimethyl-γ-hydroxybutyric acid; a precursor of pantoic acid. J. of Biol. Chem. 175, 867–870 (1948).

    CAS  Google Scholar 

  • Axelrod, A. E.: Role of the vitamins in antibody production. Metabolism 2, 1–8 (1953).

    PubMed  CAS  Google Scholar 

  • Bachhawat, B. K., W. G. Robinson and M. J. Coon: Carbon dioxide fixation in heart extracts by β-hydroxyisovaleryl coenzyme A. J. Amer. Chem. Soc. 76, 3098–3099 (1954).

    CAS  Google Scholar 

  • —: The enzymatic cleavage of β-hydroxy-β-methylglutaryl coenzyme A to acetoacetate and acetyl coenzyme A. J. of Biol. Chem. 216, 727–736 (1955).

    CAS  Google Scholar 

  • —: Enzymatic carboxylation of β-hydroxyisovaleryl coenzyme A. J. of Biol. Chem. 219, 539–550 (1956).

    CAS  Google Scholar 

  • Bachhawat, B. K., J. F. Woessner and M. J. Coon: Role of ATP in the enzymatic activation of CO2. Federat. Proc. 15, 214 (1956).

    Google Scholar 

  • Baddiley, J.: The structure of coenzyme A. Adv. Enzymol. 16, 1–21 (1955).

    CAS  Google Scholar 

  • —, D. E. Hughes, A. P. Mathias and B. S. Pierpoint: The phosphorylation of pantothenic acid by Lactobacillus arabinosus. Biochemic. J. 56, XXII (1954).

    Google Scholar 

  • Baddiley, J., and E. M. Thain: Coenzyme A. Part II. Evidence for its formulation as a derivative of pantothenic acid-4′-phosphate. J. Chem. Soc. 1951, 2255–2258 (a).

    Google Scholar 

  • Baddiley, J., and E. M. Thain: Coenzyme A. Part III. Synthesis of pantothenic acid-2′:4′-phosphate and further structural considerations. J. Chem. Soc. 1951, 3421–3424 (b).

    Google Scholar 

  • Baddiley, J., and E. M. Thain: Coenzyme A. Part VI. The identification of pantothenic acid-4′-and-2′:4′-phosphates from a hydrolisate. J. Chem. Soc. 1952, 3783–3789.

    Google Scholar 

  • Baddiley, J., and E. M. Thain: Coenzyme A. Part VIII. The synthesis of pantetheine-4′-phosphate (Acetobacter stimulatory factor), degradation product of the coenzyme. J. Chem. Soc. 1953, 1610–1615.

    Google Scholar 

  • —, G. D. Novelli and F. Lipmann: Structure of coenzyme A. Nature (Lond.) 171, 76 (1953).

    CAS  Google Scholar 

  • Beinert, H.: Studies on the fatty acid oxidizing system of animal tissues. II. β-Ketoacyl derivates of coenzyme A. J. of Biol. Chem. 205, 575–584 (1953).

    CAS  Google Scholar 

  • —, and F. L. Crane: The function of the electron-transferring flavoprotein in the first oxidative step of the fatty acid cycle. In: Inorganic nitrogen metabolism, p. 601 bis 624. Edit. W. D. McElroy and B. Glass. Baltimore: John Hopkins Press 1956.

    Google Scholar 

  • D. E. Green, P. Hele, H. Hift and R. W. v. Korff: The acetate activating enzyme system of heart muscle. J. of Biol. Chem. 203, 35–45 (1953).

    CAS  Google Scholar 

  • —, O. Hoffmann-Ostenhof, F. Lynen, S. Ochoa, G. Popjak u. R. Ruyssens: Nomenklatur der Enzyme des Fettsäurestoffwechsels. Biochem. Z. 328, 76–80 (1956).

    Google Scholar 

  • —: Nomenklatur der Enzyme des Fettsäurestoffwechsels. Z. physiol. Chem. 306, 1–6 (1956).

    CAS  Google Scholar 

  • —, R. W. v. Korff, D. E. Green, D. A. Buyske, R. E. Handschuhmacher, H. Higgings and F. M. Strong: A method for purification of coenzyme A. J. Amer. Chem. Soc. 74, 854–855 (1952).

    CAS  Google Scholar 

  • Berg, P.: Participation of adenyl-acetate in the acetate-activating system. J. Amer. Chem. Soc. 77, 3163–3164 (1955).

    CAS  Google Scholar 

  • Berman, R., J. B. Wilson and D. Nachmansohn: Choline acetylase specificity in relation to biological function. Biochim. et Biophysica Acta 12, 315–324 (1953).

    CAS  Google Scholar 

  • Block, H.: Biological synthesis of cholesterol. Harvey Lect. 48, 68–88 (1952/53).

    Google Scholar 

  • —, L. C. Clarke and I. Harary: Utilization of branched chain acids in cholesterol synthesis. J. Amer. Chem. Soc. 76, 3859–3860 (1954).

    Google Scholar 

  • Bonner, J.: Synthesis of branched chain compounds. Federat. Proc. 14, 765–766, (1955).

    CAS  Google Scholar 

  • —, and D. A. Arreguin: The biochemistry of rubber formation in the guayule. I. Rubber formation in seedlings. Arch. of Biochem. a. Biophysics 21, 109–124 (1949).

    CAS  Google Scholar 

  • Borgström, B.: The formation of new glyceride ester bonds during digestion of glycerides in the lumen of the small intestine of the rat. Arch. of Biochem. a. Biophysics 49, 268–275 (1954).

    Google Scholar 

  • Boxer, G. E., W. H. Ott and C. E. Shouk: Influence of vitamine B12 on the coenzyme A content of the liver of chicks. Arch. of Biochem. a. Biophysics 47, 474–475 (1953).

    CAS  Google Scholar 

  • —, C. E. Shouk, E. W. Gilfillan and G. A. Emerson: Changes in coenzyme A concentration during vitamine B12 deficiency. Federat. Proc. 13, 185 (1954).

    Google Scholar 

  • Brady, R. O.: Fluoroacetyl coenzyme A. J. of Biol. Chem. 217, 213–224 (1955).

    CAS  Google Scholar 

  • —, and S. Gurin: Biosynthesis of radioactive fatty acids and cholesterol. J. of Biol. Chem. 186, 461–469 (1950).

    CAS  Google Scholar 

  • —, F. D. W. Lukens and S. Gurin: Synthesis of radioactive fatty acids in vitro and its hormonal control. J. of Biol. Chem. 193, 459–464 (1951).

    CAS  Google Scholar 

  • —, and E. R. Stadtman: Enzymatic thiol-transacetylation. Federat. Proc. 13, 186 (1954).

    Google Scholar 

  • Brand, V. v., and E. Helmreich: Beziehung der Glykolyse zum Fettstoffwechsel. Die Transportfunktion der Pyridincoenzyme im Zusammenspiel von Glykolyse, Atmung und Fettsynthese. Biochem. Z. 328, 146–162 (1956).

    CAS  Google Scholar 

  • Bratton, A. C., and E. K. Marshall: A new coupling component for sulfanilamide determination. J. of Biol. Chem. 128, 537–550 (1939).

    CAS  Google Scholar 

  • Brown, D. H.: The d-glucosamine-6-phosphate-N-acetylase of yeast. Biochim. et Biophysica Acta 16, 429–431 (1955).

    CAS  Google Scholar 

  • Brown, G. M., J. A. Craig and E. E. Snell: Relation of the Lactobacillus bulgaricus factor to pantothenic acid and coenzyme A. Arch. of Biochem. 27, 473–475 (1950).

    CAS  Google Scholar 

  • —, M. Ikawa and E. E. Snell: Synthesis and microbiological activity of some pantothenic acid conjugates. J. of Biol. Chem. 213, 855–867 (1955).

    CAS  Google Scholar 

  • —, and E. E. Snell: The relationship of pantethine to naturally occurring forms of the Lactobacillus bulgaricus factor. J. of Biol. Chem. 198, 375–383 (1952).

    CAS  Google Scholar 

  • —: N-pantothenylcysteine as a precursor for pantetheine and coenzyme A. J. Amer. Chem. Soc. 75, 2782–2783 (1953).

    CAS  Google Scholar 

  • Bublitz, C., L. Rueff u. F. Lynen: 1956, unveröffentlicht.

    Google Scholar 

  • Buffa, P., and R. A. Peters: Formation of citrate in vivo induced by fluoracetate poisoning. Nature (Lond.) 163, 914 (1949).

    CAS  Google Scholar 

  • Burton, K.: The free energy change associated with the hydrolysis of the thiol ester bond of acetyl-coenzyme A. Biochemic. J. 59, 44–46 (1955).

    CAS  Google Scholar 

  • —, R. M. Stadtman, and E. R. Stadtman: The oxidation of acetaldehyde to acetyl-coenzyme A. J. of Biol. Chem. 202, 873–890 (1953).

    CAS  Google Scholar 

  • Buyske, D. A., R. E. Handschuhmacher, E. D. Schilling and F. M. Strong: The stability of coenzyme A. J. Amer. Chem. Soc. 76, 3575–3577 (1954).

    CAS  Google Scholar 

  • Chambers, E. H., and E. A. Delwiche: Biotin and succinate decarboxylation. J. Bacter. 68, 131–132 (1954).

    CAS  Google Scholar 

  • Chantrenne, H.: The requirement for coenzyme A in the enzymatic synthesis of hippuric acid. J. of Biol. Chem. 189, 227–233 (1951).

    CAS  Google Scholar 

  • Chernick, S. S., and I. L. Chaikoff: Insulin and hepatic utilization of glucose for lipogenesis. J. of Biol. Chem. 186, 535–542 (1950).

    CAS  Google Scholar 

  • —: Two blocks in carbohydrate utilization in the liver of the diabetic rat. J. of Biol. Chem. 188, 389–396 (1951).

    CAS  Google Scholar 

  • —, E. J. Masoro and E. Isaeff: Lipogenesis and glucose oxidation in the liver of the alloxan-diabetic rat. J. of Biol. Chem. 186, 527–534 (1950).

    CAS  Google Scholar 

  • Chin, C. H., and I. C. Gunsalus: Lipoic acid-mediated synthesis of acetoin from acetyl phosphate by E. coli. Federat. Proc. 13, 191–192 (1954).

    Google Scholar 

  • Chou, T. C., and F. Lipmann: Separation of acetyl transfer enzymes in pigeon liver extract. J. of Biol. Chem. 196, 89–103 (1952).

    CAS  Google Scholar 

  • —, and M. Soodak: The acetylation of d-glucosamine by pigeon liver extracts. J. of Biol. Chem. 196, 105–109 (1952).

    CAS  Google Scholar 

  • Cohen, P. P., and R. W. McGilvery: Peptide bond synthesis. J. of Biol. Chem. 171, 121–133 (1947).

    CAS  Google Scholar 

  • Coon, M. J., N. S. B. Abrahamsen and G. S. Green: The relation of α-methylbutyrate to isoleucine. II. Propionate formation. J. of Biol. Chem. 199, 75–84 (1952).

    CAS  Google Scholar 

  • Cornforth, J. W., G. D. Hunter and G. Popják: Biosynthesis of cholesterol from acetate. Arch. of Biochem. a. Biophyscs 42, 481–482 (1953) (a).

    CAS  Google Scholar 

  • —: Studies of cholesterol biosynthesis. I. A new chemical degradation of cholesterol. Biochemic. J. 54, 590–597 (1953) (b).

    CAS  Google Scholar 

  • —: Studies of cholesterol biosynthesis. II. Distribution of acetate carbon in the ring structure. Biochemic. J., 54, 597–601 (1953) (c).

    CAS  Google Scholar 

  • —, and G. Popják: The biosynthesis of cholesterol. III. Distribution of carbon14 in squalene biosynthesized from (Me-C14)-acetate. Biochemic. J. 58, 403–407 (1954).

    CAS  Google Scholar 

  • Cowgill, G. R., R. W. Winters, R. B. Schultz u. W. A. Krehl: Pantothenic acid deficiency and the adrenals; some recent experiments and their interpretations. Internat. Z. Vitaminforsch. 23, 275–298 (1952). *** DIRECT SUPPORT *** A0535004 00028

    CAS  Google Scholar 

  • Crandall, D. I., R. O. Brady and S. Gurin: Studies of acetoacetate formation with labeled carbon. II. The conversion of (C7)-labeled octanoate to acetoacetate. J. of Biol. Chem. 181, 845–852 (1949).

    CAS  Google Scholar 

  • Crane, F. L., and H. Beinert: A link between fatty acyl coenzyme A dehydrogenase and cytochrome c: a new flavin enzyme. J. Amer. Chem. Soc. 76, 4491 (1954).

    CAS  Google Scholar 

  • —: On the mechanism of dehydrogenation of fatty acyl derivatives of coenzyme A. II. The electron-transferring flavoprotein. J. of Biol. Chem. 218, 717–731 (1956).

    CAS  Google Scholar 

  • J. G. Hauge and H. Beinert: Flavoproteins involved in the first oxidative step in the fatty acid cycle. Biochim. et Biophysica Acta 17, 293–294 (1955).

    Google Scholar 

  • —, S. Mii, J. G. Hauge, D. E. Green and H. Beinert: On the mechanism of dehydrogenation of fatty acid derivatives of coenzyme A. I. The general fatty acyl coenzyme A dehydrogenase. J. of Biol. Chem. 218, 701–716 (1956).

    CAS  Google Scholar 

  • Daft, F. S., and W. H. Sebrell: Hemorrhagic adrenal necrosis in rats on deficient diets. U.S. Publ. Health Rep. 54, 2247–2250 (1939).

    CAS  Google Scholar 

  • Dagley, S., and E. A. Dawes: Dissimilation of citric acid by bacterial extracts. Nature (Lond.) 172, 345–346 (1953).

    CAS  Google Scholar 

  • Dakin, H.: Oxidations and reductions in the animal body. London: Longmans, Green & Co. 1912.

    Google Scholar 

  • Dauben, W. G., and K. H. Takemura: A study of the mechanism of conversion of acetate to cholesterol via squalene. J. Amer. Chem. Soc. 75, 6302–6304 (1953).

    CAS  Google Scholar 

  • Davidson, E. A., H. J. Blumenthal and S. Roseman: Studies on glucosamine-t-phosphate-N-acetylase. Bacter. Proc. 1956, 108–109.

    Google Scholar 

  • Deane H. W., and R. O. Greep: A morphological and histochemical study of the rats adrenal cortex after hypophysectomy, with comments on the liver. Amer. J. Anat. 79, 117–137 (1946).

    PubMed  CAS  Google Scholar 

  • —, and J. M. McKibbin: The chemical cytology of the rat adrenal cortex in pantothenic acid deficiency. Endocrinology 38, 385–400 (1946).

    PubMed  CAS  Google Scholar 

  • Decker, K.: Die biologischen Reaktionen der aktivierten Acetessigsäure. Diss. München 1955.

    Google Scholar 

  • Decker, K., u. F. Lynen: Die hydrolytische Spaltung von Acetacetyl-Coenzym A und S-Acetacetylglutathion. 3. Congr. Internat. Bioch. Brüssel 1955, Comm. 36.

    Google Scholar 

  • Delwiche, E. A., E. F. Phares and S. F. Carson: Succinate decarboxylation reaction in Propionibacterium. Federat. Proc. 12, 194 (1953).

    Google Scholar 

  • —: Succinate decarboxylation systems in Propionibacterium and Veillonella. Federat. Proc. 13, 198 (1954).

    Google Scholar 

  • Dolin, M. I., and I. C. Gunsalus: Soluble pyruvate-ketobutyrate dehydrogenase system from Streptococcus faecalis M. J. Federat. Proc. 11, 203 (1952).

    Google Scholar 

  • Dorfman, A., S. Berkman and S. A. Koser: Pantothenic acid in the metabolism of Proteus morganii. J. of Biol. Chem. 114, 393–400 (1942).

    Google Scholar 

  • Drysdale, G. R., and H. A. Lardy: Fatty acid oxidation by a soluble enzyme system from mitochondria. J. of Biol. Chem. 202, 119–136 (1953).

    CAS  Google Scholar 

  • Eisenberg, M. A.: Tricarboxylic acid cycle in Rhodospirillum rubrum. J. of Biol. Chem. 203, 815–836 (1953).

    CAS  Google Scholar 

  • Elliott, W. H.: Enzymic activations of cholic acid involving coenzyme A. Biochim. et Biophysica Acta 17, 440–441 (1955).

    CAS  Google Scholar 

  • — The enzymic activation of cholic acid by guinea pig-liver microsomes. Biochemic. J. 62, 427–433 (1956) (a).

    CAS  Google Scholar 

  • — The enzymic synthesis of taurocholic acid: a quantitative study. Biochemic. J. 62, 433–436 (1956) (b).

    CAS  Google Scholar 

  • Engel, R. W., and P. H. Phillips: Fettlebern als eine Folge von Thiaminzufuhr bei Vitamin B1-Mangel der Ratte und des Huhnes. J. Nutrit. 18, 329–338 (1939).

    CAS  Google Scholar 

  • Feldberg, W.: Synthesis of acetylcholine in sympathetic ganglia and cholinergic nerves. J. of Physiol. 101, 432–445 (1943).

    CAS  Google Scholar 

  • — Present views on the mode of action of acetylcholine in the central nervous system. Physiologic. Rev. 25, 596–642 (1945).

    CAS  Google Scholar 

  • Feldberg, W.: Gegenwärtige Probleme auf dem Gebiet der chemischen Übertragung von Nervenwirkungen. Arch. exper. Path. u. Pharmakol. 212, 64–90 (1950).

    CAS  Google Scholar 

  • —, and T. Mann: Properties and distribution of the enzyme system which synthesizes acetylcholine in nervous tissues. J. of Physiol. 104, 411–425 (1946).

    CAS  Google Scholar 

  • Felts, I. M., I. L. Chaikoff and M. I. Osborn: Insulin and the fate of acetate and formate in the diabetic liver. J. of Biol. Chem. 193, 557–562 (1951).

    CAS  Google Scholar 

  • Ferguson, T. M., and J. R. Couch: Gross and histological anomalies of B12-deficient chick embryo. Federat. Proc. 13, 456–457 (1954).

    Google Scholar 

  • Flavin, M.: Biosynthesis of methylmalonate and its isomerization to succinate. Federat. Proc. 14, 211 (1955).

    Google Scholar 

  • H. Castro-Mendoza and W. S. Beck: Enzymatic conversion of propionate to succinate. Federat. Proc. 15, 252–253 (1956) (a).

    Google Scholar 

  • — and S. Ochoa: Bicarbonate-dependent enzymic phosphorylation of fluoride by adenosine triphosphate. Biochim. et Biophysica Acta 20, 591–593 (1956) (b).

    CAS  Google Scholar 

  • Gavard, R., et H. Descourtieux: Attaque phosphorylante du glucose par un extrait enzymatique de clostridium butyricum. IV. Réaction couplée entre la triosephosphate déshydrogénase et certains enzymes du cycle des acides gras de Lynen C. r. Acad. Sci. Paris 239, 201–203 (1954).

    PubMed  CAS  Google Scholar 

  • Gergely, J., P. Hele and C. V. Ramakrishnan: Succinyl and acetyl coenzyme A deacylases. J. of Biol. Chem. 198, 323–334 (1952).

    CAS  Google Scholar 

  • Gilvarg, C.: Zit. bei S. Ochoa 1954.

    Google Scholar 

  • Goldberg, M., and D. R. Sanadi: Incorporation of labeled carbon dioxide into pyruvate and α-ketoglutarate. J. Amer. Chem. Soc. 74, 4972–4973 (1952).

    CAS  Google Scholar 

  • Goldman, D. S.: Studies on the fatty acid oxidizing system of animal tissues. VII. The β-ketoacyl coenzyme A cleavage enzyme. J. of Biol. Chem. 208, 345–357 (1954).

    CAS  Google Scholar 

  • Grassl, M.: Nukleotide der Hefe. Analyse des bei Anreicherung von Coenzym A anfallenden schwerlöslichen Bariumsalzes. Reinigung von Coenzym A-derivaten. Diplomarbeit München 1956.

    Google Scholar 

  • Green, D. E.: Fatty acid oxidation in soluble systems of animal tissues. Biol. Rev. 29, 330–366 (1954).

    CAS  Google Scholar 

  • —, and H. Beinert: Oxidative phosphorylation in a nonmitochondrial system of pig heart. In: Phosphorus metabolism, vol. I, p. 330–343. Edit. W. D. McElroy and B. Glass. Baltimore: John Hopkins Press 1951.

    Google Scholar 

  • —, D. S. Goldman, S. Mii and H. Beinert: The acetoacetate activation and cleavage enzyme system. J. of Biol. Chem. 202, 137–150 (1953).

    CAS  Google Scholar 

  • —, S. Mii, H. R. Mahler and R. M. Bock: The fatty acid oxidizing system of animal tissues. III. Butyryl coenzyme A dehydrogenase. J. of Biol. Chem. 206, 1–12 (1954).

    CAS  Google Scholar 

  • Gregory, J. D., G. D. Novelli and F. Lipmann: The composition of coenzyme A. J. Amer. Chem. Soc. 74, 854 (1952).

    CAS  Google Scholar 

  • Guehring, R. R., L. S. Hurley and A. F. Morgan: Cholesterol metabolism in pantothenic acid deficiency. J. of Biol. Chem. 197, 485–493 (1952).

    CAS  Google Scholar 

  • Gunsalus, I. C.: Group transfer and acyl-generating functions of lipoic acid derivatives. In: Mechanism of enzyme action. p. 545–580. Edit. W. D. McElroy and B. Glass. Baltimore: John Hopkins Press 1954.

    Google Scholar 

  • L. S. Barton and W. Gruber: Biosynthesis and structure of lipoic acid derivatives. J. Amer. Chem. Soc. 78, 1763–1766 (1956).

    CAS  Google Scholar 

  • L. Struglia and D. J. O’Kane: Pyruvic acid metabolism. IV. Occurence, properties and partial purification of pyruvate oxidation factor. J. of Biol. Chem. 194, 859–869 (1952).

    CAS  Google Scholar 

  • György, P., and C. E. Poling: Pantothenic acid and nutritional achromotrichia in rats. Science (Lancaster, Pa.) 92, 202–203 (1940).

    Google Scholar 

  • Hager, L. P., J. D. Fortney and I. C. Gunsalus: Mechanism of pyruvate and α-ketoglutarate dehydrogenase systems. Federat. Proc. 12, 213 (1953) (a).

    Google Scholar 

  • —, and I. C. Gunsalus: Lipoic acid dehydrogenase: the function of E. coli fraction B. J. Amer. Chem. Soc. 75, 5767–5768 (1953) (b).

    CAS  Google Scholar 

  • Handschuhmacher, R. E., G. C. Mueller and F. M. Strong: Improved enzymatic assay for coenzyme A. J. of Biol. Chem. 189, 335–342 (1951).

    Google Scholar 

  • Harpur, R. P., and I. H. Quastel: Phosphorylation of d-glucosamine by brain extracts. Nature (Lond.) 164, 693–694 (1949).

    CAS  Google Scholar 

  • Hartmann, G.: 1956, unveröffentlicht.

    Google Scholar 

  • Hauge, J. G., F. L. Crane and H. Beinert: On the mechanism of dehydrogenation of fatty acyl derivatives of coenzyme A. III. Palmityl-CoA dehydrogenase. J. of Biol. Chem. 219, 727–733 (1956).

    CAS  Google Scholar 

  • Hele, P.: The acetate activating enzyme of beef heart. J. of Biol. Chem. 206, 671–676 (1954).

    CAS  Google Scholar 

  • Helmreich, E., S. Goldschmidt, W. Lamprecht u. F. Ritzl: Der Einfluß von Kohlehydraten, insbesondere von Fructose auf den Umfang und den zeitlichen Ablauf der Bildung von aktivierter Essigsäure und Brenztraubensäure in der Rattenleber. II. Mitteilung. Z. physiol. Chem. 292, 184–206 (1953).

    CAS  Google Scholar 

  • Hilschmann, N.: Diss. München 1957.

    Google Scholar 

  • Hift, H., L. Ouellet, J. W. Littlefield and D. R. Sanadi: α-ketoglutarate dehydrogenase. J. of Biol. Chem. 204, 565–575 (1953).

    CAS  Google Scholar 

  • Hills, G. M.: Experiments on the function of pantothenate in bacterial metabolism. Biochemic. J. 37, 418–425 (1943).

    CAS  Google Scholar 

  • Hilz, H.: Über die Bildungsweise der „aktivierten Essigsäure”. Diss. München 1953.

    Google Scholar 

  • Hoagland, M. B., and G. D. Novelli: Biosynthesis of coenzyme A from phosphopantetheine and of pantetheine from pantothenate. J. of Biol. Chem. 207, 767–773 (1954).

    CAS  Google Scholar 

  • Holzer, H., S. Goldschmidt, W. Lamprecht und E. Helmreich: Bestimmung stationärer DPN/DPNH-Konzentrationen in lebenden Zellen und Geweben. Z. physiol. Chem. 297, 1–18 (1954).

    CAS  Google Scholar 

  • Hunter jr., F. E.: Oxidative phosphorylation during electron transport. In: Phosphorus metabolism, vol. I, p. 297–330. Edit. W. D. McElroy and B. Glass. Baltimore: John Hopkins Press, 1951.

    Google Scholar 

  • Hurlbert, R. B., H. Schmitz, A. F. Brumm and R. van Potter: Nucleotide metabolism. II. Chromatographic separation of acid soluble nucleotides. J. of Biol. Chem. 209, 23–39 (1954).

    CAS  Google Scholar 

  • Hurley, L. S., and H. F. Morgan: Carbohydrate metabolism and adrenal cortical function in the pantothenic acid deficient rat. J. of Biol. Chem. 195, 583–590 (1952).

    CAS  Google Scholar 

  • Ivanovics, G.: Das Salicylation als spezifischer Hemmungsstoff der Biosynthese der Pantothensäure. Z. physiol. Chem. 276, 33–55 (1942).

    CAS  Google Scholar 

  • Jännes, J.: Interrelationship between vitamin B12 and pantothenic acid in the metabolism of „wild” strains of Escherichia coli. Experientia (Basel) 10, 31–33 (1954).

    Google Scholar 

  • Jagannathan, V., and R. S. Schweet: Pyruvic oxidase of pigeon breast muscle. I. Purification and properties of the enzyme. J. of Biol. Chem. 196, 551–562 (1952).

    CAS  Google Scholar 

  • Jones, M. E.: Diskussion im Rahmen des „Symposium on chemistry and function of coenzyme A”. Federat. Proc. 12, 708–710 (1953).

    CAS  Google Scholar 

  • S. Black, R. M. Flynn and F. Lipmann: Acetyl coenzyme A synthesis through pyrophosphoryl split of adenosine triphosphate. Biochim. et Biophysica Acta 12, 141–149 (1953) (a).

    CAS  Google Scholar 

  • F. Lipmann, H. Hilz and F. Lynen: On the enzymatic mechanism of coenzyme A acetylation with adenosine triphosphate and acetate. J. Amer. Chem. Soc. 75, 3285 bis 3286 (1953) (b).

    Google Scholar 

  • Kaplan, N. O., and F. Lipmann: The assay and distribution of coenzyme A. J. of Biol. Chem. 174, 37–44 (1948) (a).

    CAS  Google Scholar 

  • —: Reactions between acetate, acetylphosphate and the adenylic acid system in tissue and bacterial extracts. Federat. Proc. 7, 163 (1948) (b).

    CAS  Google Scholar 

  • Katz, J., I. Liebermann and H. A. Barker: Acetylation of amino acids by enzymes of Clostridium kluyveri. J. of Biol. Chem. 200, 417–429 (1953) (a).

    CAS  Google Scholar 

  • —: Formation of propionyl-, butyryl-and other acylglycines by enzymes of Clostridium kluyveri. J. of Biol. Chem. 200, 431–441 (1953) (b).

    CAS  Google Scholar 

  • Kaufman, S.: Studies on the mechanism of reaction catalized by the phosphorylating enzyme. J. of Biol. Chem. 216, 153–164 (1955). *** DIRECT SUPPORT *** A0535004 00029

    CAS  Google Scholar 

  • Kaufman, S., and S. G. A. Alivisatos: Purification and properties of the phosphorylating enzyme from spinach. J. of Biol. Chem. 216, 141–152 (1955).

    CAS  Google Scholar 

  • —, Ch. Gilvarg, O. Cori and S. Ochoa: Enzymatic oxidation of α-ketoglutarate and coupled phosphorylation. J. of Biol. Chem. 203, 869–888 (1953).

    CAS  Google Scholar 

  • Kennedy, E. P., and A. L. Lehninger: The enzymatic oxidation of fatty acids. In: Phosphorus Metabolism, vol. II, p. 253–281. Edit. W. D. McElroy and B. Glass. Baltimore: John Hopkins Press 1952.

    Google Scholar 

  • —, and S. B. Weiss: Cytidine diphosphate choline: a new intermediate in lecithin biosynthesis. J. Amer. Chem. Soc. 77, 250–251 (1956).

    Google Scholar 

  • Klein, H. P., and F. Lipmann: The relationship of coenzyme A to lipide synthesis. I. Experiments with yeast. J. of Biol. Chem. 203, 95–99 (1953) (a).

    CAS  Google Scholar 

  • —: The relationship of coenzyme A to lipide synthesis. II. Experiments with rat liver. J. of Biol. Chem. 203, 101–108 (1953) (b).

    CAS  Google Scholar 

  • Knoop, F.: Der Abbau aromatischer Fettsäuren im Tierkörper. Beitr. chem. Physiol. u. Path. 6, 150–162 (1904).

    CAS  Google Scholar 

  • Korff, R. W. v.: A rapid spectrophotometric assay for coenzyme A. J. of Biol. Chem. 200, 401–405 (1953).

    Google Scholar 

  • — The effects of alkali metal ions on the acetate activating enzyme system. J. of Biol. Chem. 203, 265–271 (1953).

    Google Scholar 

  • Korkes, S., A. del Campillo, I. C. Gunsalus and S. Ochoa: Enzymatic synthesis of citric acid. IV. Pyruvate as acetyl donor. J. of Biol. Chem. 193, 721–735 (1951).

    CAS  Google Scholar 

  • —, S. R. Korey, J. R. Stern, D. Nachmansohn and S. Ochoa: Coupling of acetyl donor systems with choline acetylase. J. of Biol. Chem. 198, 215–220 (1952) (b).

    CAS  Google Scholar 

  • —, and S. Ochoa: Pyruvate oxidation system of heart muscle. J. of Biol. Chem. 195, 541–547 (1952) (a).

    CAS  Google Scholar 

  • —, J. R. Stern, I. C. Gunsalus and S. Ochoa: Enzymatic synthesis of citrate from pyruvate and oxalacetate. Nature (Lond.) 166, 439–440 (1950).

    CAS  Google Scholar 

  • Kornberg, A., and W. E. Pricer: Nucleotide pyrophosphatase. J. of Biol. Chem. 182, 763–778 (1950).

    CAS  Google Scholar 

  • —: Enzymatic synthesis of the coenzyme A derivates of long chain fatty acids. J. of Biol. Chem. 204, 329–343 (1953) (a).

    CAS  Google Scholar 

  • —: enzymatic esterification of α-glycerophosphate by long chain fatty acids. J. of Biol. Chem. 204, 345–357 (1953) (b).

    CAS  Google Scholar 

  • Kuhn, R., u. Th. Wieland: Zur Biosynthese der Pantothensäure. Ber. dtsch. chem. Ges. 75, 121–123 (1942).

    Google Scholar 

  • Langdon, R. G.: The requirement of triphosphoryridine nucleotide in fatty acid synthesis. J. Amer. Chem. Soc. 77, 5190–5192 (1955).

    CAS  Google Scholar 

  • Lardy, H. A.: Theory concerning the mechanism of fatty acid oxidation and synthesis, and carbon dioxide fixation. Proc. Nat. Acad. Sci. U.S.A. 38, 1003–1013 (1952).

    CAS  Google Scholar 

  • —, and J. Adler: Synthesis of succinate from propionate and bicarbonate by soluble enzymes from liver mitochondria. J. of Biol. Chem. 219, 933–942 (1956).

    CAS  Google Scholar 

  • —, and R. Peanasky: Metabolic functions of biotin. Physiologic. Rev. 33, 560–565 (1953).

    CAS  Google Scholar 

  • Lazarow, A., and S. J. Cooperstein: Abstracts Communs. 14. Internat. Physiol. Congr. 547, Montreal, Canada Sept. 1953.

    Google Scholar 

  • Lee Peng, C. H.: Butyryl adenylate and its possible function in the fatty acid activating system. Biochim. et Biophysica Acta 22, 42–48 (1956).

    Google Scholar 

  • Lehninger, A. L.: The relationship of the adenosine polyphosphates to fatty acid oxidation in homogenized liver preparations. J. of Biol. Chem. 157, 363–381 (1945).

    CAS  Google Scholar 

  • —, and G. D. Greville: The enzymic oxidation of d-and 1-β-hydroxybutyrate. Biochim. et Biophysica. Acta 12, 188–202 (1953).

    CAS  Google Scholar 

  • Lewintow, L.: Zit. bei G. D. Novelli, F. J. Schmetz a. N. O. Kaplan, Enzymatic degradation and resynthesis of coenzyme A. J. of Biol. Chem. 206, 533–545 (1954).

    Google Scholar 

  • —, and G. D. Novelli: The synthesis of coenzyme A from pantetheine: Preparation and properties of pantetheine kinase. J. of Biol. Chem. 207, 761–765 (1954).

    Google Scholar 

  • Lipmann, F.: Enzymic synthesis of acetyl phosphate. J. of Biol. Chem. 155, 55–70 (1944).

    CAS  Google Scholar 

  • Lipmann, F.: Acetylation of sulfanilamide by liver homogenates and extracts. J. of Biol. Chem. 160, 173–190 (1945).

    CAS  Google Scholar 

  • — Acetyl phosphate. Adv. Enzymol. 6, 231–267 (1946).

    CAS  Google Scholar 

  • — Biosynthetic mechanisms. Harvey Lect. 44, 99–123 (1948/49).

    Google Scholar 

  • — Chemistry and function of coenzyme A. Bacter. Rev. 17, 1–16 (1953).

    CAS  Google Scholar 

  • — Function of enzymes in group transfer. Introduction. In: Mechanism of enzyme action. p. 463. Edit. W. D. McElroy and B. Glass, Baltimore: John Hopkins Press 1954 (a).

    Google Scholar 

  • — The mechanism of some ATP-linked reactions and certain aspects of protein synthesis. In: Mechanism of enzyme action, p. 599–604. Edit. W. D. McElroy and B. Glass. Baltimore: John Hopkins Press 1954 (b).

    Google Scholar 

  • —, M. E. Jones, S. Black and R. M. Flynn: Enzymatic pyrophosphorylation of coenzyme A by adenosine triphosphate. J. Amer. Chem. Soc. 74, 2384–2385 (1952).

    CAS  Google Scholar 

  • —, and N. O. Kaplan: A common factor in the enzymic acetylation of sulfanilamide and of choline. J. of Biol. Chem. 162, 743–744 (1946).

    CAS  Google Scholar 

  • —, G. D. Novelli, L. C. Tuttle and D. M. Guirard: Coenzyme for acetylation, a pantotnenic acid derivative. J. of Biol. Chem. 167, 869–870 (1947).

    CAS  Google Scholar 

  • —, and L. C. Tuttle: The condensation of acetyl phosphate with formate or CO2 in bacterial extracts. J. of Biol. Chem. 158, 505–519 (1945) (a).

    CAS  Google Scholar 

  • —: Specific micromethod for the determination of acyl phosphates. J. of Biol. Chem. 159, 21–28 (1945) (b).

    CAS  Google Scholar 

  • Lippincott, S. W., and H. P. Morris: Morphologic changes associated with pantothenic acid deficiency in the mouse. J. Nat. Canc. Inst. 2, 39–46 (1941).

    CAS  Google Scholar 

  • Lipton, M. A., and E. S. G. Barron: On the mechanism of the anaerobic synthesis of acetyl choline. J. of Biol. Chem. 166, 367–380 (1946).

    CAS  Google Scholar 

  • Littlefield, J. W., and D. R. Sanadi: Role of the coenzyme A and disphospho pyridine nucleotide in the oxidation of pyruvate. J. of Biol. Chem. 199, 65–70 (1952).

    CAS  Google Scholar 

  • Lynen, F.: Zum biologischen Abbau der Essigsäure. I. Über die “Induktionszeit” bei verarmter Hefe. Liebigs Ann. 552, 270–306 (1942).

    CAS  Google Scholar 

  • — Quantitative Bestimmung von Acylmercaptanen mittels der Nitroprussid-Reaktion. Liebigs Ann. 574, 33–37 (1951) (a).

    CAS  Google Scholar 

  • Lynen, F.: “Aktivierte Essigsäure”, ein Schlüsselpunkt im Bau-und Betriebsstoffwechsel der Zelle. Vortrag, gehalten vor der Ges. Dtsch. Chemiker und der Med. Ges. in Freiburg i. Br., 16. Nov. 1951 (b).

    Google Scholar 

  • — Acetyl coenzyme A and the fatty acid cycle. Harvey Lect. 48, 210–244 (1952/53).

    Google Scholar 

  • — Functional group of coenzyme A and its metabolic relations, especially in the fatty acid cycle. Federat. Proc. 12, 683–691 (1953) (a).

    CAS  Google Scholar 

  • — Mécanisme de la β-oxydation des acides gras. Bull. Soc. Chim. 35, 1061–1083 (1953) (b).

    CAS  Google Scholar 

  • — Participation of coenzyme A in the oxidation of fat. Nature (Lond.) 174, 962–965 (1954).

    CAS  Google Scholar 

  • — Lipid: metabolism. Annual. Rev. Biochem. 24, 653–688 (1955) (a).

    CAS  Google Scholar 

  • — Der Fettsäurecyclus. Angew. Chem. 67, 463–470 (1955) (b).

    CAS  Google Scholar 

  • —, K. Decker, O. Wieland und D. Reinwein: Zur Spezifität der Enzyme des Fettsäurecyclus. In: Biochemical problems of lipids. Proc. II. Internat. Conference, Gent, Juli 1955. Edit. G. Popjak and E. Le Breton. London: Butterworths Sci. Publ. 1956 (a).

    Google Scholar 

  • Lynen, F., u. J. Knappe: 1956, unveröffentlicht.

    Google Scholar 

  • Lynen, F., I. Lerch u. L. Rueff: 1956 (b), unveröffentlicht.

    Google Scholar 

  • —, and S. Ochoa: Enzymes of fatty acid metabolism. Biochim. et Biophysica Acta 12, 299–314 (1953).

    CAS  Google Scholar 

  • —, u. E. Reichert: Zur chemischen Struktur der “aktivierten Essigsäure”. Angew. Chem. 63, 47–48 (1951).

    CAS  Google Scholar 

  • —, u. L. Rueff: Zum biologischen Abbau der Essigsäure. VI. “Aktivierte Essigsäure”, ihre Isolierung aus Hefe und ihre chemische Natur. Liebigs Ann. 574, 1–32 (1951).

    CAS  Google Scholar 

  • —, L. Wessely, O. Wieland u. L. Rueff: Zur β-Oxydation der Fettsäuren. Angew. Chem. 64, 687 (1952).

    CAS  Google Scholar 

  • Lynen, F., und O. Wieland: β-Ketoreduktase. In: Methods in Enzymol. 1, 566–573 (1955). Edit. S. P. Colowick and N. O. Kaplan. New York: Academic Press 1955.

    Google Scholar 

  • Maas, W. K.: Mechanism of enzymatic synthesis of pantothenic acid from β-alanine and pantoic acid. Federat. Proc. 13, 256–257 (1954).

    Google Scholar 

  • —, and B. D. Davis: Pantothenate studies: interference by d-serine and α-aspartic acid with pantothenate synthesis in Escherichia coli. J. Bacter. 60, 733–745 (1950).

    CAS  Google Scholar 

  • —, and G. D. Novelli: Synthesis of pantothenic acid by dephosphorylation of adenosine triphosphate. Arch. of Biochem. a. Biophysics 43, 236–238 (1953) (a).

    CAS  Google Scholar 

  • —, and F. Lipmann: Acetylation of glutamic acid by extracts of Escherichia coli. Proc. Nat. Acad. Sci. U.S.A. 39, 1004–1008 (1953) (b).

    CAS  Google Scholar 

  • —, and H. J. Vogel: α-Oxoisovaleric acid, a precursor of pantothenic acid in Escherichia coli. J. Bacter. 65, 388–393 (1953).

    CAS  Google Scholar 

  • Mahler, H. R.: Role of coenzyme A in fatty acid metabolism. Federat. Proc. 12, 694 bis 702 (1953).

    CAS  Google Scholar 

  • — The fatty acid oxidizing system of animal tissues. IV. The prosthetic group of butyryl coenzyme A dehydrogenase. J. of Biol. Chem. 206, 13–26 (1954).

    CAS  Google Scholar 

  • —, S. J. Wakil and R. M. Bock: Studies on fatty acid oxidation. Enzymatic activation of fatty acids. J. of Biol. Chem. 204, 453–468 (1953).

    CAS  Google Scholar 

  • Martius, C.: Über die Unterbrechung des Citronensäurecyclus durch Fluoressigsäure. Liebigs Ann. 561, 227–237 (1949).

    CAS  Google Scholar 

  • Millerd, A., and J. Bonner: Acetate activation and acetoacetate formation in plant systems. Arch. of Biochem. a. Biophysics 49, 343–355 (1954).

    CAS  Google Scholar 

  • Mislow, K., and W. C. Meluch: The configuration of (+)α-lipoic acid. J. Amer. Chem. Soc. 78, 2341–2342 (1956).

    CAS  Google Scholar 

  • Morgan, A. F.: The effect of vitamin deficiency on adrenocortical function. Vitamins a. Hormones 9, 161–212 (1951).

    CAS  Google Scholar 

  • —, and E. M. Lewis: The modification of choline deficiency by simultaneous pantothenic acid deficiency. J. of Biol. Chem. 200, 839–850 (1953).

    CAS  Google Scholar 

  • Munoz, J. M., and L. F. Leloir: Fatty acid oxidation by liver enzymes. J. of Biol. Chem. 147, 355–362 (1943).

    CAS  Google Scholar 

  • Nachmansohn, D.: Die Rolle des Acetylcholins in den Elementarvorgängen der Nervenleitung. Erg. Physiol. 48, 575–683 (1955).

    PubMed  CAS  Google Scholar 

  • —, and M. Berman: Studies on acetyl choline acetylase. III. Preparation of the coenzyme and its effect on the enzyme. J. of Biol. Chem. 165, 551–563 (1946).

    CAS  Google Scholar 

  • —, and A. L. Machado: The formation of acetyl choline. A new enzyme “choline acetylase”. J. of Neurophysiol. 6, 397–403 (1943).

    CAS  Google Scholar 

  • —, I. B. Wilson, S. R. Korey and R. Bergman: Choline acetylase VI. Substitution of adenosine triphosphate acetate by thiolacetate. J. of Biol. Chem. 195, 25–35 (1952).

    CAS  Google Scholar 

  • Nisman, B., and J. Mager: Coenzyme A as a co-factor of the pyruvate dehydrogenase system of Cl. saccharobutylicum. Nature (Lond.) 169, 709 (1952).

    CAS  Google Scholar 

  • —, et S. B. Siesendanger: Étude de la degradation des acids cétoniques par les extraits de Clostridium sporogenes. C. r. Acad. Sci. Paris 238, 292 (1954).

    PubMed  CAS  Google Scholar 

  • Novelli, G.D.: Metabolic function of pantothenic acid. Physiologic. Rev. 33, 525–543 (1953).

    CAS  Google Scholar 

  • — Methods for the determination of coenzyme A. In: Methods of biochemical analysis, p. 189–214. Edit. D. Glick, New York u. London: Interscience Publ. 1955.

    Google Scholar 

  • —, N. O. Kaplan and F. Lipmann: The liberation of pantothenic acid from coenzyme A. J. of Biol. Chem. 177, 97–107 (1949).

    CAS  Google Scholar 

  • —: Enzymatic degradation of coenzyme A. Federat. Proc. 9, 209 (1950).

    Google Scholar 

  • —, and F. Lipmann: Bacterial conversion of pantothenic acid into coenzyme A (acetylation) and its relation to pyruvic oxdation. Arch. of Biochem. a. Biophysics 14, 23–27 (1947) (a).

    CAS  Google Scholar 

  • —: The involvement of coenzyme A in acetate oxidation in yeast. J. of Biol. Chem. 171, 833–834 (1947) (b).

    CAS  Google Scholar 

  • —: The catalytic function of coenzyme A in citric acid synthesis. J. of Biol. Chem. 182, 213–228 (1950). *** DIRECT SUPPORT *** A0535004 00030

    CAS  Google Scholar 

  • Ochoa, S.: Enzymic mechanisms in the citric acid cycle. Adv. Enzymol. 15, 183–270 (1954).

    CAS  Google Scholar 

  • —, J. Harting, M. J. Coon, J. R. Stern, A. del Campillo and M. C. Schneider: Zit. bei J. R. Stern, Enzymes of acetoacetate formation and breakdown in S. P. Colowick and N. O. Kaplan. (Edit.) Methods in enzymology, vol. I, p. 581–585. New York: Academic Press 1955.

    Google Scholar 

  • —, J. R. Stern and M. C. Schneider: Enzymatic synthesis of citric acid. II. Crystalline condensing enzyme. J. of Biol. Chem. 193, 691–720 (1951).

    CAS  Google Scholar 

  • Olson, R. E., and N. O. Kaplan: The effect of pantothenic acid deficiency upon the coenzyme A content and pyruvate utilization of rat and duck tissues. J. of Biol. Chem. 175, 515–529 (1948).

    CAS  Google Scholar 

  • Pennington, R. I.: Metabolism of short-chain fatty acids in the sheep. II. Further studies with rumen epithelium. Biochemic. J. 56, 410–416 (1954).

    CAS  Google Scholar 

  • Peters, R. A.: The studies of enzymes in relation to selective toxicity in animal tissues. Symposia Soc. Exper. Biol. 3, 36–59 (1949).

    Google Scholar 

  • — Der Chemismus einer altbekannten Vergiftung: die Synthese zum Gift. Endeavour 13, 147–154 (1954).

    CAS  Google Scholar 

  • —, H. M. Sinclair and R. H. S. Thompson: Analysis of the inhibition of pyruvate oxidation by arsenicals in relation to the enzyme theory of vesication. Biochemic. J. 40, 516–524 (1946).

    CAS  Google Scholar 

  • Pierpoint, W. S., and D. E. Hughes: The synthesis of coenzyme A by Lactobacillus arabinosus 17-5. Biochem. J. 56, 130–135 (1954).

    PubMed  CAS  Google Scholar 

  • Purko, M., W. O. Nelson and W. A. Wood: The nutritional equivalence of pantothenate and p-aminobenzoate (PAB) for the growth of Bacterium linens. J. Bacter. 66, 561 bis 567 (1953).

    Google Scholar 

  • —: The role of p-aminobenzoate in pantoate synthesis by Bacterium linens. J. of Biol. Chem. 207, 51–58 (1954) (a).

    CAS  Google Scholar 

  • Purko, M., W. O. Nelson and W. A. Wood: Abstr. Amer. Chem. Soc. 126th Meeting, 57c, New York, N.Y. Sept. 1954 (b).

    Google Scholar 

  • Rabinowitz, J. L., and S. Gurin: The biosynthesis of radioactive cholesterol by particle-free extracts of rat-liver. Biochim. et Biophysica Acta 10, 345–346 (1953).

    CAS  Google Scholar 

  • Reed, L. J., and B. G. de Busk: A conjugate of α-lipoic acid required for oxidation of pyruvate and α-ketoglutarate by an Escherichia coli mutant. J. of Biol. Chem. 199, 873–880 (1952) (a).

    CAS  Google Scholar 

  • —: Chemical nature of an α-lipoic acid conjugate required for oxidation of pyruvate and α-ketoglutarate by an Escherichia coli mutant. J. of Biol. Chem. 199, 881–888 (1952) (b).

    CAS  Google Scholar 

  • —: Metabolic functions of thiamine and lipoic acid. Physiologic. Rev. 33, 544–559 (1953).

    CAS  Google Scholar 

  • Riggs, T. R., and D. M. Hegsted: The effect of pantothenic acid deficiency on acetylation in rats. J. of Biol. Chem. 172, 539–545 (1948).

    CAS  Google Scholar 

  • Robinson, W. G., B. K. Bachhawat and M. J. Coon: Tiglyl coenzyme A and α-methylacetoacetyl coenzyme A, intermediates in the enzymatic degradation of isoleucine. J. of Biol. Chem. 218, 391–400 (1956).

    CAS  Google Scholar 

  • Rose J., M. Grunberg-Manago, S. Korey and S. Ochoa: Enzymatic phosphorylation of acetate. J. of Biol. Chem. 211, 737–756 (1954).

    CAS  Google Scholar 

  • Rudney, H.: The synthesis of β-hydroxy-methylglutaric acid in rat liver homogenates. J. Amer. Chem. Soc. 76, 2595–2596 (1954).

    CAS  Google Scholar 

  • Ruzicka, L.: The isoprene rule and biogenesis of terpenic compounds. Experientia (Basel) 9, 357–367 (1953).

    CAS  Google Scholar 

  • Sanadi, D. R., D. M. Gibson, P. Ayengar and M. Jacob: α-ketoglutaric dehydrogenase. Guanosine diphosphate in coupled phosphorylation. J. of Biol. Chem. 218, 505–520 (1956).

    CAS  Google Scholar 

  • —, and J. W. Littlefield: Studies on α-ketoglutaric oxidase. III. Rôle of coenzyme A and diphosphopyridine nucleotide. J. of Biol. Chem. 201, 103–115 (1953).

    CAS  Google Scholar 

  • Sandza, J. G., and L. R. Cerecedo: Requirement of the mouse for pantothenic acid and for a new factor of vitamin B complex. J. Nutrit. 21, 609–615 (1941).

    CAS  Google Scholar 

  • Sarma, P. S., P. S. Menon and P. S. Venkatachalam Acetylation in the laboratory diagnosis of “burning feet syndrom” (pantothenic acid deficiency). Current Sci. 18, 367–368 (1949).

    CAS  Google Scholar 

  • Schachter, D., and J. V. Taggart: Benzoyl coenzyme A and hippurate synthesis. J. of Biol. Chem. 203, 925–934 (1953).

    CAS  Google Scholar 

  • —: Glycine N-acylase: purification and properties. J. of Biol. Chem. 208, 263–275 (1954).

    CAS  Google Scholar 

  • Schaefer, H., u. E. Hoffmann: Acetylierung und Leberfunktion. Med. Mschr. 4, 359 bis 361 (1950).

    Google Scholar 

  • Schneider, W. C., and G. H. Hogeboom: Intercellular distribution of enzymes. V. Further studies on the distribution of cytochrome c in rat liver homogenates. J. of Biol. Chem. 183, 123–128 (1950).

    CAS  Google Scholar 

  • Schönheimer, R.: The dynamic state of body constituents. Cambridge, Mas.: Harvard University Press 1949.

    Google Scholar 

  • Schultz, R. B., R. W. Winters and W. A. Krehl: The adrenal cortex of the pantothenic acid deficient rat: modification of the lesion by ACTH and cortison treatment. Endocrinology 51, 336–343 (1952).

    PubMed  CAS  Google Scholar 

  • Schweet, R. S. and K. Cheslock: Pyruvic oxidase of pigeon breast muscle. III. Factors influencing enzymatic activity. J. of Biol. Chem. 199, 746–756 (1952).

    Google Scholar 

  • Seaman, G. R.: Effect of thioctic acid on the incorporation of carbon dioxide into pyruvate. J. Bacter. 65, 744–745 (1953).

    CAS  Google Scholar 

  • —and M. dell Naschke: Removal of thioctic acid from enzymes. J. of Biol. Chem. 213, 705–711 (1955).

    CAS  Google Scholar 

  • Selye, H., and H. Stone: Hormonally induced transformation of adrenal into myeloid tissue. Amer. J. Path. 26, 211–233 (1950).

    PubMed  CAS  Google Scholar 

  • Seubert, W.: Äthylenhydrase. Diss. München 1955.

    Google Scholar 

  • —, and F., Lynen: Enzymes of the fatty acid cycle. II. Ethylene reductase. J. Amer. Chem. Soc. 75, 2787–2788 (1953).

    CAS  Google Scholar 

  • Seubert, W. and F., Lynen: 1956, unveröffentlicht.

    Google Scholar 

  • Shuster, L., and N. O. Kaplan: A specific b nucleotidase. J. of Biol. Chem. 201, 535 bis 546 (1953).

    Google Scholar 

  • Simon, E. J., and D. Shemin: The preparation of S-succinyl-coenzyme A. J. Amer. Chem. Soc. 75, 2520 (1953).

    CAS  Google Scholar 

  • Slater, E. C.: Biological oxidations. Annual Rev. Biochem. 22, 17–56 (1953).

    CAS  Google Scholar 

  • Smith, R. A., J. R. Stamer and I. C. Gunsalus: Citritase and isocitritase reactions. Biochim. et Biophysica Acta 19, 567–570 (1956).

    CAS  Google Scholar 

  • Snell, E. E. and G. M. Brown: Pantetheine and related forms of the Lactobacillus bulgaricus factor (LBF). Adv. Enzymol. 14, 49–71 (1953).

    CAS  Google Scholar 

  • —, V. J. Peters, J. A. Craig, E. L. Wittle, J. A. Moore, V. M. McGlohom and O. D. Bird: Chemical nature and synthesis of the Lactobacillus bulgaricus factor. J. Amer. Chem. Soc. 72, 5349–5355 (1950).

    CAS  Google Scholar 

  • Sonderhoff, R., u. F. Thomas: Die enzymatische Dehydrierung der Trideuteroessigsäure. Liebigs Ann. 530, 195–213 (1937).

    CAS  Google Scholar 

  • Soskin, S., and R. Levine: Carbohydrate metabolism, p. 112. University of Chicago Press 1947.

    Google Scholar 

  • Spoor, H. J., and E. P. Ralli: Chemical studies on melanogenesis in normal and adrenalectomized rats. Endocrinology 35, 325–337 (1944).

    CAS  Google Scholar 

  • Srere, P. A.: 1956, unveröffentlicht.

    Google Scholar 

  • —, and F. Lipmann: An enzymatic reaction between citrate adenosine triphosphate and coenzyme A. J. Amer. Chem. Soc. 75, 4874 (1953).

    CAS  Google Scholar 

  • Stadtman, E. R.: The net enzymatic synthesis of acetyl coenzyme A. J. of Biol. Chem. 196, 535–546 (1952).

    CAS  Google Scholar 

  • — The coenzyme A transphorase system in Clostridium kluyveri. J. of Biol. Chem. 203, 501–512 (1953) (a).

    CAS  Google Scholar 

  • — The enzymatic synthesis of acyl coenzyme A compounds. J. Cellul. a. Comp. Physiol. 41, Suppl. 1, 89–108 (1953) (b).

    CAS  Google Scholar 

  • Stadtman, E. R.: Diskussion im Rahmen des “Symposium on chemistry and function of coenzyme A”. Federat. Proc. 12, 692–693 (1953) (c).

    CAS  Google Scholar 

  • — On the energy-rich nature of acetyl imidazole, an, enzymatically active compound. In: The Mechanism of Enzyme Action, p. 581–598. Edit. W. D. McElroy and B. Glass. Baltimore: John Hopkins Press 1954.

    Google Scholar 

  • — Fermentation de l’acide propionique. Bull. Soc. Chim. biol. Paris 37, 931–938 (1955).

    PubMed  CAS  Google Scholar 

  • — Propionate oxidation by cell free extracts of Clostridium, propionicum. Federat. Proc. 15, 360–361 (1956).

    Google Scholar 

  • —, and H. A. Barker: Fatty acid synthesis by enzyme preparation of Clostridium kluyveri. II. The aerobic oxidation of ethanol and butyrate with the formation of acetyl phosphate. J. of Biol. Chem. 180, 1095–1115 (1949).

    CAS  Google Scholar 

  • —: Fatty acid synthesis by enzyme preparation of Clostridium kluyveri. VI. Reactions of acetyl phosphate. J. of Biol. Chem. 184, 769–793 (1950).

    CAS  Google Scholar 

  • —, M. Doudoroff and F. Lipmann: The mechanism of acetoacetate synthesis. J. of Biol. Chem. 191, 377–382 (1951) (a).

    CAS  Google Scholar 

  • —, S. Katz and H. A. Barker: Cyanide-induced acetylation of amino acids by enzymes of Clostridium kluyveri. J. of Biol. Chem. 195, 779–785 (1952).

    CAS  Google Scholar 

  • —, and A. Kornberg: The purification of coenzyme A by ion-exchange chromatography. J. of Biol. Chem. 203, 47–54 (1953).

    CAS  Google Scholar 

  • —, G. D. Novelli and F. Lipmann: Coenzyme A function in an acetyl transfer by the phosphotransacetylase system. J. of Biol. Chem. 191, 365–376 (1951) (b).

    CAS  Google Scholar 

  • —, and F. H. White: The enzymatic synthesis of N-acetylimidazole. J. Amer. Chem. Soc. 75, 2022 (1953).

    CAS  Google Scholar 

  • Stern, J. R.: Enzymes of acetoacetate formation and breakdown. In S. P. Colowick and N. O. Kaplan (Edit.), Methods in enzymology, vol. I p. 573–581. New York: Academic Press 1955.

    Google Scholar 

  • —, M. J. Coon and A. del Campillo: Acetoacetyl coenzyme A as intermediate in the enzymatic breakdown and synthesis of acetoacetate. J. Amer. Chem. Soc. 75, 1517 bis 1518 (1953) (a).

    Google Scholar 

  • —: Enzymatic breakdown and synthesis of acetoacetate. Nature (Lond.) 171, 28–30 (1953) (b).

    CAS  Google Scholar 

  • —, and A. del Campillo: Enzymatic reaction of crotonyl coenzyme A. J. Amer. Chem. Soc. 75, 2277–2278 (1953) (c).

    CAS  Google Scholar 

  • —: Enzymes of fatty acid metabolism. II. Properties of cyystalline crotonase. J. of Biol. Chem. 218, 985–1002 (1956).

    CAS  Google Scholar 

  • — and A. L. Lehninger: Enzymatic racemization of β-hydroxy-butyryl-S-coenzyme A and the stereospecificity of enzymes of the fatty acid cycle. J. Amer. Chem. Soc. 77, 1073–1074 (1955).

    CAS  Google Scholar 

  • —, and I. Raw: Enzymes of fatty acid metabolism. I. General introduction; crystalline crotonase. J. of Biol. Chem. 218, 971–983 (1956).

    CAS  Google Scholar 

  • —, and G. I. Drummond: Acetoacetyl glutathione thioesterase and mechanism of deacylation of acetoacetyl coenzyme A. Federat. Proc. 15, 363–364 (1956).

    Google Scholar 

  • —, and S. Ochoa: Enzymatic synthesis of citric acid by condensation of acetate and oxalacetate. J. of Biol. Chem. 179, 491–492 (1949).

    CAS  Google Scholar 

  • —, and F. Lynen: Enzymatic synthesis of citric acid. V. Reaction of acetyl coenzyme A. J. of Biol. Chem. 198, 313–321 (1952).

    CAS  Google Scholar 

  • —, B. Shapiro, E. R. Stadtman and S. Ochoa: Enzymatic synthesis of citric acid. III. Reversibility and mechanism. J. of Biol. Chem. 193, 703–720 (1951).

    CAS  Google Scholar 

  • Stetten jr., D., and G. E. Boxer: Studies in carbohydrate metabolism. III. Metabolic defects in alloxan diabetes. J. of Biol. Chem. 156, 271–278 (1944).

    CAS  Google Scholar 

  • -, and B. V. Klein: Studies in carbohydrate metabolism. VI. Effects of hypo-and hyperinsulinism in rabbits. J. of Biol. Chem. 162, 377–382 (1946).

    CAS  Google Scholar 

  • Strecker, H. J., and S. Ochoa: Pyruvate oxidation system and acetoin formation. J. of Biol. Chem. 209, 313–326 (1954). *** DIRECT SUPPORT *** A0535004 00031

    CAS  Google Scholar 

  • Szulmajster, J., B. Nisman et G. Cohen: Sur le mécanisme de la formation des ascides gras inférieurs chez les Clostridies. I. Mise en évidence de la thiolase et de la β-cétohydrogénase. C. r. Acad. Sci. Paris 238, 164–166 (1954).

    PubMed  CAS  Google Scholar 

  • Tabachnick, S. A., and D. D. Bonnycastle: Effect of thyroxine on coenzyme A levels. Nature (Lond.) 172, 400 (1953).

    CAS  Google Scholar 

  • —: The effect of thyroxine on the coenzyme A content of some tissues. J. of Biol. Chem. 207, 757–760 (1954).

    CAS  Google Scholar 

  • Tabor, H., A. H. Mehler and E. R. Stadtman: The enzymatic acetylation of amines. J. of Biol. Chem. 204, 127–138 (1953).

    CAS  Google Scholar 

  • Talbert, P. T., F. M. Huennekens and B. W. Gabrio: Preparation and properties of butyryl adenylate. Federat. Proc. 15, 358 (1956).

    Google Scholar 

  • Tietz, A., and B. Shapiro: The synthesis of glycerides in liver homogenates. Biochim. et Biophysica Acta 19, 374–375 (1956).

    CAS  Google Scholar 

  • Virtanen, A. I., u. T. Laine: Die Decarboxylierung von d-Lysin und 1-Asparaginsäure. Enzymologia (Den Haag) 3, 266–270 (1937).

    CAS  Google Scholar 

  • Vitale, J. J., and D. W. Hegsted: Effect of pantothenic acid deficiency and foodintake on respiration of duodenal mucosa. Federat. Proc. 11, 457–458 (1952).

    Google Scholar 

  • Vogel, H. J.: Path of ornithine synthesis in Escherichia coli. Proc. Nat. Acad. Sci. U.S.A. 39, 578–583 (1953).

    CAS  Google Scholar 

  • Vries, W. H. de, W. M. Govier, J. S. Evans, J. D. Gregory, G. D. Novelli, M. Soodak and F. Lipmann: Purification of coenzyme A from fermentation sources and its further partial identification. J. Amer. Chem. Soc. 72, 4838 (1950).

    Google Scholar 

  • Wagner, R. P., and B. M. Guirard: Gene-controlled reaction in neurospora involving the synthesis of pantothenic acid. Proc. Nat. Acad. Sci. U.S.A. 34, 398–402 (1948).

    CAS  Google Scholar 

  • Wakil, S. J.: d(—)β-hydroxybutyryl-coenzyme A dehydrogenase. Biochim. et Biophysica Acta 18, 314–315 (1955).

    CAS  Google Scholar 

  • —, D. E. Green, S. Mii and H. R. Mahler: Studies on the fatty acid oxidizing system of animal tissues. VI. β-hydroxyacyl coenzyme A dehydrogenase. J. of Biol. Chem. 207, 631–638 (1954) (a).

    CAS  Google Scholar 

  • —, and H. R. Mahler: Studies on the fatty acid oxidizing system of animal tissues. V. Unsaturated fatty acyl coenzyme A hydrase. J. of Biol. Chem. 207, 125–132 (1954) (b).

    CAS  Google Scholar 

  • Walkenstein, S. S., and S. Weinhouse: Oxidation of aldehydes by mitochondria of rat tissues. J. of Biol. Chem. 200, 515–523 (1953).

    CAS  Google Scholar 

  • Walker, P. G.: A colorimetric method for the estimation of acetoacetate. Biochemic. J. 58, 699–704 (1954).

    CAS  Google Scholar 

  • Wang, T. P., and N. O. Kaplan: Kinases for the systhesis of coenzyme A and triphosphopyridine nucleotide. J. of Biol. Chem. 206, 311–325 (1954) (b).

    CAS  Google Scholar 

  • —, L. Shuster and N. O. Kaplan: The monoester phosphate grouping of coenzyme A. J. of Biol. Chem. 206, 299–309 (1954) (a).

    CAS  Google Scholar 

  • Warburg, O.: Wasserstoffübertragende Fermente. Berlin: W. Saenger 1948.

    Google Scholar 

  • —, u. W. Christian: Isolierung der prosthetischen Gruppe der d-Aminosäureoxydase. Biochem. Z. 298, 150–168 (1938).

    CAS  Google Scholar 

  • Ward, G. B., J. M. Brown and E. E. Snell: Phosphorylation of pantothenic acid and pantetheine by an enzyme from Proteus morganii. J. of Biol. Chem. 206, 869–876 (1955).

    Google Scholar 

  • Weiss, S. B., and E. P. Kennedy: Enzymatic conversion of CDP-choline and CDP-ethanolamine to phospholipides. Federat. Proc. 15, 381 (1956) (a).

    Google Scholar 

  • —: The enzymatic synthesis of triglycerides. J. Amer. Chem. Soc. 78, 3550 (1956) (b).

    CAS  Google Scholar 

  • Whiteley, H. R.: Cofactor requirements for the decarboxylation of succinate. J. Amer. Chem. Soc. 75, 1518 (1953).

    CAS  Google Scholar 

  • Wieland, O.: Neuere Erkenntnisse auf dem Gebiet des Kohlehydratstoffwechsels und ihre Bedeutung für die Klinik. Ärztl. Forsch. 6 (I), 298–306 (1952).

    Google Scholar 

  • Wieland, O., D. Reinwein u. F. Lynen: Die Verteilung der Enzyme des Fettsäurecyclus im tierischen und menschlichen Organismus. In: Biochemical problems of lipids. Proc. II. Internat. Conference, Gent, Juli 1955. Edit. G. Popj and E. Le Breton. London: Butterworths Sci. Publ. 1956.

    Google Scholar 

  • —, T., Möller, u. E. F. Möller: Über eine biologische Synthese der Pantothensäure. Z. physiol. Chem. 269, 227–235 (1941).

    CAS  Google Scholar 

  • —, u. L. Rueff: Synthese von S-β-Oxybutyryl-und S-Acetacetyl-Coenzym A. Angew. Chem. 65, 186–187 (1953).

    Google Scholar 

  • —, u. G. Schneider: N-Acyl-imidazole als energiereiche Acylverbindungen. Liebigs Ann. 580, 159–168 (1953).

    CAS  Google Scholar 

  • Winters, R. W., R. B. Schulz and W. A. Krehl: The adrenal cortex of the pantothenic acid deficient rat: eosinophile and lymphocyte responsis. Endocrinology 50, 377 bis 384 (1952) (a).

    Google Scholar 

  • —: The adrenal cortex of pantothenic acid deficient rat: carbohydrate metabolism. Endocrinology 50, 388–398 (1952) (b).

    PubMed  CAS  Google Scholar 

  • Wintrobe, M. M., M. H. Miller, R. H. Follis, H. J. Stein, C. Mushatt and S. Humphreys: Sensory neuron degeneration in pigs. IV. Protection afforded by calcium pantothenate and pyridoxine. J. Nutrit. 24, 345–366 (1942).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1957 Springer-Verlag

About this paper

Cite this paper

Lynen, F., Decker, K. (1957). Das coenzym a und seine biologischen funktionen. In: Ergebnisse der physiologie biologischen chemie und experimentellen pharmakologie. Ergebnisse der Physiologie, biologischen Chemie und experimentellen Pharmakologie, vol 49. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0113838

Download citation

  • DOI: https://doi.org/10.1007/BFb0113838

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-02135-3

  • Online ISBN: 978-3-540-36664-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics