Skip to main content

Wasserdurchlässigkeit und Permeabilität der Capillarwände

  • Conference paper
  • First Online:
Ergebnisse der physiologie biologischen chemie und experimentellen pharmakologie

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Armstrong, W. D., J. A. Johnson, L. Singer, R. I. Lienke and M. L. Premer: Rates of transcapillary movement of calcium and sodium and of calcium exchange by the skeleton. Amer. J. Physiol. 171, 641–651 (1952).

    PubMed  CAS  Google Scholar 

  • Bacon, L. R.: Measurement of absolute viscosity by the falling-sphere method. J. Franklin Inst. 221, 251–258 (1936).

    CAS  Google Scholar 

  • Bakay, L., B. Selverstone and W. H. Sweet: Intravascular distribution of Na24 injected intravenously in man. J. Labor. a. Clin. Med. 38, 893–903 (1951).

    CAS  Google Scholar 

  • Barcroft, H., and A. C. Dornhorst: Blood flow response to temeprature and other factors. S. 122–131. Ciba Symposium: Peripheral circulation in man., Herausgeg. von G. E. W. Wolstenholme u. J. S. Freeman., London: J. & A. Churchill 1954.

    Google Scholar 

  • —, and O. G. Edholm: The effect of temperature on blood flow and deep temperature in the human forearm. J. of Physiol. 102, 5–20 (1943).

    CAS  Google Scholar 

  • —, and H. J. C. Swan: Sympathetic control of human blood vessels, Kap. 6. london: Edward Arnold & Co. 1953.

    Google Scholar 

  • Barrer, R. M.: Diffusion in and through solids. London: Cambridge Univ. Press 1951.

    Google Scholar 

  • Bateman, J. B.: Large molecules; their physico-chemical properties and their architectural and functional singificance in living matter. Physical Chemistry of cells and tissues, herausges. von R. Höber, Sekt. 2. Philadelphia: Blakiston Company 1945.

    Google Scholar 

  • Bauer, J. H., and T. P. Hughes: The preparation of graded collodion membranes of Elford and their use in the study of filterable viruses. J. Gen. Physiol. 18, 143–162 (1934).

    PubMed  CAS  Google Scholar 

  • Bayliss, W. M., and E. H. Starling: Observations on venous pressures and their relationship to capillary pressures. J. of Physiol. 16, 159–202 (1894).

    CAS  Google Scholar 

  • Beattie, J., and A. C. Corcoran: Renal clearances of grass polysaccharide: obeervations on glomerular porosity and on the relation of this function to proteinuria in renal disease. J. Clin. Invest.31, 445–450 (1952).

    PubMed  CAS  Google Scholar 

  • Bechhold, H.: Durchlässigkeit von Ultrafiltern. Z. physik. Chem. 64, 328–342 (1908).

    CAS  Google Scholar 

  • Benson, J. A., K. S. Kim and J. L. Bollman: Extravascular diffusion of protein. Amer. J. Physiol. 182, 217–220 (1955).

    PubMed  CAS  Google Scholar 

  • Berkeley, Earl of and E. G. J. Hartley: “Dynamic” osmotic pressure. Proc. Roy. Soc. Lond., Ser. A 82, 271–275 (1909). *** DIRECT SUPPORT *** A0535004 00011

    Google Scholar 

  • Berson, S. A., R. S. Yalow, S. S. Schreiber and J. Post: Tracer experiments with I131 labelled human serum albumin: distribution and degradation studies. J. Clin. Invest. 32, 746–768 (1953).

    PubMed  CAS  Google Scholar 

  • Bigelow, S. L.: The permeabilities of collodion, gold beater’s skin, parchment paper and porcelain membranes. J. Amer. Chem. Soc. 29, 1675–1692 (1907).

    Google Scholar 

  • Bjerrum, N., u. E. Manegold: Der Zusammenhang zwischen Membranstruktur und Wasserduchlässigkeit. Kolloid-Z. 43, 5–14 (1927) (a).

    CAS  Google Scholar 

  • —: Über Kollodium-Membranen. Darstellung gleichmäßiger Membranen und ihre Charakterisierung. Kolloid-Z. 42, 97–112 (1927) (b).

    CAS  Google Scholar 

  • Bloom, B., I. L. Chaikoff and W. O. Reinhardt: Intestinal lymph as pathway for transport of absorbed fatty acids of different chain lengths. Amer. J. Physiol. 166, 451–455 (1951).

    PubMed  CAS  Google Scholar 

  • Borgström, B.: Transport form of 14C-decanoic acid in portal and inferior vena caval blood during absorption in the rat. Acta physiol. scand. (Stockh.) 34, 71–74 (1955).

    Google Scholar 

  • Bott, P. A., and A. N. Richards: The passage of protein molecules through the glomerular membranes. J. of Biol. Chem. 141, 291–310 (1941).

    CAS  Google Scholar 

  • Boussinesq, J.: Consideration théoretiques sur la filtration des liquides par le sable, ou par d’autres milieux poreux analogues, et sur l’analogie des courants électriques avec ceux de filtration. C. r. Acad. Sci. Paris 159, 349–354 (1914).

    Google Scholar 

  • Brown, E., and E. M. Landis: Effect of local cooling on fluid movement, effective osmotic pressure and capillary permeability in the frog’s mesentery. Amer. J. Physiol. 149, 302–315 (1947).

    PubMed  CAS  Google Scholar 

  • —, C. S. Wise and E. O. Wheeler: The effect of local cooling on the filtration and absorption of fluid in the human forearm. J. Clin. Invest. 26, 1031–1042 (1947).

    CAS  Google Scholar 

  • Brues, A. M., and C. M. Masters: The permeability of normal and malignant cells to water. Amer. J. Canc. 28, 324–333 (1936).

    CAS  Google Scholar 

  • Bücherl, E., u. M. Schwab: Der Einfluß von 1-Adrenalin und 1-Arterenol auf den Sauerstoffverbrauch des ruhenden Skeletmuskels. Pflügers Arch. 254, 327 (1952) (a).

    PubMed  Google Scholar 

  • —: Der Sauerstoffverbrauch des ruhenden Skeletmuskels bei reflektorisch-nervöser Vasokonstriktion. Pflügers Arch. 254, 337 (1952) (b).

    PubMed  Google Scholar 

  • Bugher, J. C.: Characteristics of collodion membranes for ultrafiltration. J. Gen. Physiol. 36, 431–448 (1953).

    PubMed  CAS  Google Scholar 

  • Burch, G., P. Reaser and J. Cronvich: Rates of sodium turnover in normal subjects and in patients with congestive heart failure. J. Labor. a. Clin. Med. 32, 1169–1191 (1947).

    CAS  Google Scholar 

  • Chambers, R., and B. W. Zweifach: Intercellular cement and capillary permeability. Physiologic. Rev. 27, 436–463 (1947).

    CAS  Google Scholar 

  • Chinard, F. P.: Possible mechanisms of formation of glomerular fluid. Renal Function, herausgeg. von S. E. Bradley. Trans. Third Conf. Josiah Macy, Jr., New York 1952, S. 40–50.

    Google Scholar 

  • — Rate of formation of glomerular fluid. Amer. J. Physiol. 171, 578–586 (1952).

    PubMed  CAS  Google Scholar 

  • —, and T. Enns: Transcapillary pulmonary exchange of water in the dog. Amer. J. Physiol. 178, 197–202 (1954).

    PubMed  CAS  Google Scholar 

  • —, G. J. Vosburgh and T. Enns: Transcapillary exchange of water and other substances in certain organs of the dog. Amer. J. Physiol. 183, 221 (1955).

    PubMed  CAS  Google Scholar 

  • Cohn, E. J.: Chemical, physiological and immunological properties and clinical uses of blood derivatives Experientia (Basel) 3, 125–136 (1947).

    CAS  Google Scholar 

  • —, and J. T. Edsall: Proteins, amino acids and peptides. New York: Reinhold 1943.

    Google Scholar 

  • Collander, R.: Über die Durchlässigkeit der Kupferferrozyanidniederschlagmembran für Nichtelektrolyte. Kolloid-Beih. 19, 72–106 (1924).

    CAS  Google Scholar 

  • —, u. H. Bärlund: Permeabilitätsstudien an Chara ceratophylla. II. Die Permeabilität für Nirchtelektrolyte. Acta bot. fenn. 11, 1–114 (1933).

    Google Scholar 

  • Conn, H. J. jr., and J. S. Robertson: Kinetics of potassium, transfer in the left ventricle of the intact dog. Amer. J. Physiol. 181, 319–324 (1955).

    PubMed  CAS  Google Scholar 

  • Cotlove, E.: Mechanism and extent of distribution of inulin and sucrose in chloride space of tissues. Amer. J. Physiol. 176, 396–410 (1954).

    PubMed  CAS  Google Scholar 

  • Courtice, F. C., and B. Morris: The exchange of lipids between plasma and lymph of animals. Quart. J. Exper. Physiol. 40, 138–148 (1955).

    CAS  Google Scholar 

  • Cowie, D. B., L. B. Flexner and W. S. Wilde: Capillary permeability: rate of transcapillary exchange of chloride in the guinea pig as determined with radiochloride. Amer. J. Physiol. 158, 231–236 (1949).

    PubMed  CAS  Google Scholar 

  • Daft, F. S., F. S. Robscheit-Robbins and G. H. Whipple: Plasma protein given by vein and its influence on body metabolism. J. of Biol. Chem. 123, 87–98 (1938).

    CAS  Google Scholar 

  • Danielli, J. F.: Capillary permeability and oedema in the perfused frog. J. of Physiol. 98, 109–129 (1940).

    CAS  Google Scholar 

  • — A method for estimating the fraction of the volume of a muscle contained in the vascular system. J. of Physiol. 100, 239–245 (1941).

    CAS  Google Scholar 

  • —, and H. Davson: The volume of the vascular system, and penetration of sugars from the vascular system into the intercellular space. J. of Physiol. 100, 246–255 (1941).

    CAS  Google Scholar 

  • —, and A. Stock: The structure and permeability of blood capillaries. Biol. Rev. 19, 81–94 (1944).

    Google Scholar 

  • Darcy, H.: Les fontaines publique de la ville de Dijon. Zit. von R. D. Wyckoff u. a. 1933.

    Google Scholar 

  • Davidson, D., P. Eggleton and P. Foggie: The diffusion of atmospheric gases through fats and oils. Quart. J. Exper. Physiol. 37, 91–105 (1952).

    CAS  Google Scholar 

  • Davson, H.: A textbook of general physiology, S. 176; 184, 196. Philadelphia 1952.

    Google Scholar 

  • —, and J. F. Danielli: The permeability of natural membranes. London: Cambridge Univ. Press 1943.

    Google Scholar 

  • Drinker, C. K.: The permeability and diameter of the capillaries in the web of the brown frog (R. temporaria) when perfused with solutions containing pituitary extract and horse serum. J. of Physiol. 63, 249–269 (1927).

    CAS  Google Scholar 

  • —and M. E. Field: The protein content of mammalian lymph and the relation of lymph to tissue fluid. Amer. J. Physiol. 97, 32–39 (1931).

    CAS  Google Scholar 

  • —, M. F. Warren, F. W. Maurer and J. D. McCarrell: The flow, pressure and composition of cardiac lymph. Amer. J. Physiol. 130, 43–55 (1940).

    CAS  Google Scholar 

  • —, and J. M. Yoffey: Lymphatics lymph and lymphoid tissue. Cambridge, Mass.: Harvard Univ. Press 1941.

    Google Scholar 

  • Duclaux, J., et J. Errera: Le mecanisme de l’ultrafiltration. Part. I. Rev. gén. Colloides 2, 130–139 (1924).

    CAS  Google Scholar 

  • —: Le mecanisme de l’ultrafiltration. Part II. Rev. gén. Colloides 3, 97–103 (1925).

    CAS  Google Scholar 

  • —: Der Mechanismus der Ultrafiltration. Kolloid.-Z. 38, 54–57 (1926).

    CAS  Google Scholar 

  • Edelman, I. S.: Exchange of water between blood and tissues. Amer. J. Physiol. 171, 279–296 (1952).

    PubMed  CAS  Google Scholar 

  • Edsall, J. T.: The plasma proteins and their fractionation. Erg. Physiol. 46, 308–353 (1950).

    CAS  Google Scholar 

  • Eggerth, A. H.: The preparation and standardization of collodion membranes. J. of Biol. Chem. 48, 203–221 (1921).

    CAS  Google Scholar 

  • Elford, W. J.: Structure in very permeable collodion gel films and its significance in filtration problems. Proc. Roy. Soc. Lond., Ser. B 106, 216–228 (1930).

    CAS  Google Scholar 

  • —, and J. D. Ferry: The calibration of graded collodion membranes. Brit. J. Exper. Path. 16, 1–14 (1953).

    Google Scholar 

  • —: The ultrafiltration of proteins through graded collodion membranes. II. Haemocyanin (Helix), edestin, and egg albumin. Biochemic. J. 30; 84–91 (1936).

    CAS  Google Scholar 

  • Engel, D.: The influence of the sympathetic nervous system on capillary permeability. J. of Physiol. 99, 161–181 (1941).

    CAS  Google Scholar 

  • Erbe, F.: Die Bestimmung der Porenverteilung nach ihrer Größe in Filtern und Ultrafiltern. Kolloid-Z. 63, 277–285 (1933).

    CAS  Google Scholar 

  • Faxén, H.: Der Widerstand gegen Bewegung einer starren Kugel in einer zähen, Flüssigkeit, die zwischen zwei parallelen ebenen Wänden eingeschlossen ist. Ann. Physik 68, 89–119 (1922) (a).

    Google Scholar 

  • Faxén, H.: Die Bewegung einer starren Kugel längs der Achse eines mit zäher Flüssigkeit gefüllten Rohres. Ark. Mat., Astronom. Fysik 17, Nr 27 (1922) (b).

    Google Scholar 

    Google Scholar 

  • Ferry, J. D.: Statistical evaluation of sieve constants in ultrafiltration. J. Gen. Physiol. 20, 95–104 (1936) (a).

    PubMed  CAS  Google Scholar 

  • — Ultrafilter membranes and ultrafiltration. Chem. Rev. 18, 373–455 (1936) (b).

    CAS  Google Scholar 

  • Field, M. E., and C. K. Drinker: The permeability of the capillaries of the dog to protein. Amer. J. Physiol. 97, 40–50 (1931).

    CAS  Google Scholar 

  • Fine, J., and A. M. Seligman: Traumatic shock. VII. A study of the problem of the “lost plasma” in hemorrhagic, tourniquet and burn shock by the use of radioactive iodo-plasma protein. J. Clin. Invest. 23, 720–730 (1944).

    PubMed  CAS  Google Scholar 

  • Fink, R. M., T. Enns, C. P. Kimball, H. E. Silberstein, W. F. Bale, S. C. Madden and G. H. Whipple: Plasma protein metabolism—normal and associated with shock. J. of Exper. Med. 80, 455–475 (1944).

    CAS  Google Scholar 

  • Fisch, S., S. B. Gilson and R. E. Taylor: Capillary circulation in human arms studied by venous congestion. A cutaneo-muscular vasomotor reflex. J. Appl. Physiol. 3, 113–132 (1950).

    PubMed  CAS  Google Scholar 

  • Flexner, L. B., D. B. Cowie and G. J. Vosburgh: Studies on capillary permeability with tracer substances. Cold Spring Harbor Symp. Quant. Biol. 13, 88–98 (1948) (a).

    CAS  Google Scholar 

  • —, A. Gellhorn and M. Merrell: Studies on rates of exchange of substances between the blood and extravascular fluid. The exchange of water in the guinea pig. J. of Biol. Chem. 144, 35–40 (1942).

    CAS  Google Scholar 

  • —, G. J. Vosburgh and D. B. Cowie: Capillary permeability: rate of transcapillary exchange of iron added to plasma as radioactive ferric beta1-globulinate. Amer. J. Physiol. 153, 503–510 (1948) (b).

    PubMed  CAS  Google Scholar 

  • Fogelman, M. J., P. O’B. Montgomery and C. A. Moyer: Internal water exchange rates following hemorrhage in splenectomized dogs. Amer. J. Physiol. 169, 94–101 (1952).

    PubMed  CAS  Google Scholar 

  • Freed, S. C., and E. Lindner: The effect of steroids of the adrenal cortex on capillary permeability. Amer. J. Physiol. 134, 258–262 (1941).

    CAS  Google Scholar 

  • Friedman, L.: Diffusion of non-electrolytes in gelatin gels. J. Amer. Chem. Soc. 52, 1305–1310 (1930) (a).

    CAS  Google Scholar 

  • — Structure of agar gels from studies of diffusion. J. Amer. Chem. Soc. 52, 1311–1315 (1930) (b).

    CAS  Google Scholar 

  • —, and E. O. Kraemer: The structure of gelatin gels from studies of diffusion. J. Amer. Chem. Soc. 52 1295–1304 (1930).

    CAS  Google Scholar 

  • Fries, E.D., T. F. Higgins and H. J. Morowitz: Transcapillary exchange rates of deuterium oxide and thiocyanate in the forearm of man. J. Appl. Physiol. 5, 526–532 (1953).

    Google Scholar 

  • Fujita, A.: Die Permeabilität der getrockneten Kollodium Membran für Nichtelektrolyte. Biochem. Z. 170, 18–29 (1926).

    CAS  Google Scholar 

  • Garby, L.: Permeation of a membrane in the presence of water-flow induced by hydrostatic pressure. Nature (Lond.) 173, 444 (1954).

    Google Scholar 

  • Gellhorn, A., M. Merrell and E. M. Renkin: The rate of transcapillary exchange of sodium in normal and shocked dogs. Amer. J. Physiol. 142, 407–427 (1944).

    CAS  Google Scholar 

  • Geyer, G., E. Keibl, u. H. Kölbl: Über Beziehungen zwischen Permeabilität und Eiweißdurchlässigkeit der Capillären. Z. exper. Med. 122, 1–13 (1953).

    CAS  Google Scholar 

  • Giebisch, G., H. D. Lawson and R. F. Pitts: Renal excretion and volume of distribution of various dextrans. Amer. J. Physiol. 178, 168–176 (1954).

    PubMed  CAS  Google Scholar 

  • Gierer, A., u. K. Wirtz: Molekulare Theorie der Mikroreibung. Z. Naturforsch. 8c, 532–538 (1953).

    Google Scholar 

  • Ginsburg, J. M., and W. S. Wilde: Distribution of intravenous radiopotassium. Amer. J. Physiol. 179, 63–75 (1954).

    PubMed  CAS  Google Scholar 

  • Gitlin, D., and C. A. Janeway: Studies on the plasma proteins in the interstitialfluid of muscle. Science (Lancaster, Pa.) 120, 461–463 (1954).

    CAS  Google Scholar 

  • Grabar, P., et S. Nikitine: Sur le diamètre des pores des membranes en collodion utiliseés en ultrafiltration. J. Chim. physique 33, 721–741 (1936). *** DIRECT SUPPORT *** A0535004 00012

    CAS  Google Scholar 

  • Grim, E.: Relation between pressure and concentration difference across membranes permeable to solute and solvent. Proc. Soc. Exper. Biol. a. Med. 83, 195–200 (1953).

    CAS  Google Scholar 

  • Guérout, A.: Sur les dimensions des intervalles poreux des membranes. C. r. Acad. Sci. Paris 75, 1809–1812 (1872).

    Google Scholar 

  • Hahn, L., u. G. Hevesy: Rate of penetration of ions through the capillary wall. Acta physiol. scand. (Stockh.) 1, 347–361 (1941).

    CAS  Google Scholar 

  • Hall, B. V.: Studies of normal glomerular structure by electron microscopy. Proc. 5. Ann. Conf. on the nephrotic syndrome. The National Nephrosis Foundation, New York 1955.

    Google Scholar 

  • Hall, V.: Further studies of the normal structure of the renal glomerulus. Proc. 6. Ann. Conf. on the nephrotic syndrome. The National Nephrosis Foundation, New York 1955.

    Google Scholar 

  • Hatta, H., K. Okada, S. Morita and H. Mishima: On splenic lymph and its hemolytic action. Jap. J. Physiol. 5, 208–215 (1955).

    CAS  Google Scholar 

  • Hecht, G.: Über den Mechanismus der Kollidonausscheidung der Niere. Arch. exper. Path. u. Pharmakol. 226, 46–61 (1955).

    CAS  Google Scholar 

  • Hendley, E. D., and A. A. Schiller: Change in capillary permeability during hypoxemic perfusion of rat hindlegs. Amer. J. Physiol. 179, 216–220 (1954).

    PubMed  CAS  Google Scholar 

  • —: Protection against hypoxemic edema by histaminic and adrenergic blockade Amer. J. Physiol. 180, 378–386 (1955).

    PubMed  CAS  Google Scholar 

  • Hevesy, G., E. Hofer u. A. Krogh: The permeability of the skin of frogs to water as determined by D2O and H2O. Skand. Arch. Physiol. (Berl. u. Lpz.) 199–214 (1935).

    Google Scholar 

  • —u. C. F. Jacobsen: Rate of passage of water through capillary and cell walls. Acta physiol. scand. (Stockh.) 1, 11–18 (1941).

    Google Scholar 

  • Hitchcock, D. I.: The size of pores in collodion membranes. J. Gen. Physiol 9, 745–762, (1926).

    Google Scholar 

  • Höber, R.: Membrane permeability to solutes in its relations to cellular physiology. Physiologic Rev. 16, 52–102 (1936).

    Google Scholar 

  • Hyman, C.: Filtration across the vascular wall as a function of several physical factors. Amer. J. Physiol. 142, 671–685 (1944).

    Google Scholar 

  • —, and R. Chambers: Effect of adrenal cortical compounds on edema formation of frog’s hind limbs. Endocrinology 32, 310–318 (1943).

    CAS  Google Scholar 

  • —, S. I. Rapaport, A. M. Saul and M. E. Morton: Independence of capillary filtration and tissue clearance. Amer. J. Physiol. 168, 674–679 (1952).

    PubMed  CAS  Google Scholar 

  • Jacob, C. E., Vorsitzender: Report of the subcommittee on permeability. Amer. Geophys. Union, Trans. 27, 245–256 (1946).

    Google Scholar 

  • Jacobs, M. H.: Osmotic properties of the erythrocyte. The applicability of osmotic laws to the rate of hemolysis in hypotonic solutions of non-electrolytes. Biol. Bull. 62, 178–194 (1932).

    CAS  Google Scholar 

  • — The quantitative measurement of the permeability of the erythrocytes to water and to solutes by the hemolysis method. J. Cellul. a. Comp. Physiol. 4, 161–183 (1933).

    Google Scholar 

  • — Diffusion processes. Erg. Biol. 12, 1–160 (1935).

    Google Scholar 

  • Javitt, N. B., and A. T. Miller Jr.: Relation of glomerular filtration rate to physiologic proteinuria. Federat. Proc. 10, 70 (1951).

    Google Scholar 

  • Johnson, J. A., H. M. Cavert and N. Lifson: Kinetics concerned with the distribution of isotopic water in isolated, perfused dog heart and skeletal muscle. Amer. J. Physiol. 171, 687–693, (1953).

    Google Scholar 

  • Kety, S. S.: Measurement of regional circulation by the local clearance of radioactive sodium. Amer. Heart J. 38, 321–328 (1949).

    PubMed  CAS  Google Scholar 

  • — The theory and applications of the exchange of inert gas at the lungs and tissues. Pharmacol. Rev. 3, 1–41 (1951).

    PubMed  CAS  Google Scholar 

  • —, and C. F. Schmidt: The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory, procedure and normal values. J. Clin. Invest. 27, 476–483 (1948).

    Google Scholar 

  • Keys, A.: The apparent permeability of the capillary membrane in man. Trans. Faraday Soc. 33, 930–939 (1937).

    CAS  Google Scholar 

  • Koefoed-Johnson, V., u. H. H. Ussing: Contributions of diffusion and flow to the passage of D2O through living membranes. Acta physiol. scand. (Stockh.) 28, 60 bis 76 (1953).

    Google Scholar 

  • Korner, P. I., and F. C. Courtice: the effects of acute anoxia and noradrenaline vasoconstriction on lymph flow and protein dynamics following transfusion of Ringer-Locke solution. Austral. J. Exper. Biol. a. Med. Sci. 32, 321–332 (1954).

    CAS  Google Scholar 

  • —, B. Morris and F. C. Courtice: An analysis of factors affecting lymph flow and protein composition during gastric absorption of foods and fluids, and during intravenous infusion. Austral. J. Exper. Biol. a. Med. Sci. 32, 301–320 (1954).

    CAS  Google Scholar 

  • Kreyberg, I.: Development of acute tissue damage due to cold. Physiologic. Rev. 29, 156–167 (1949).

    CAS  Google Scholar 

  • Krogh, A.: The number and distribution of capillaries in muscles and calculations of the oxygen pressure head necessary for supplying the tissue. J. of Physiol. 52, 409–415 (1919).

    CAS  Google Scholar 

  • — The anatomy and physiology of capillaries. New Haven: Yale University Press 1929.

    Google Scholar 

  • —, E. M. Landis, and A. H. Turner: The movement of fluid through the human capillary wall in relation to venous pressure and to the colloid osmotic pressure of the blood. J. Clin. Invest. 11, 63–95 (1932).

    PubMed  CAS  Google Scholar 

  • —, u. F. Nakazawa: Beiträge zur Messung des kolloid-osmotischen Druckes in biologischen Flüssigkeiten. Biochem. Z. 188, 241–258 (1927).

    CAS  Google Scholar 

  • Kruhøffer, P.: Inulin as an indicator for the extracellular space. Acta physiol. scand. (Stockh.) 11, 16–36 (1946) (a).

    Google Scholar 

  • — The significance of diffusion and convection for the distribution of solutes in the interstitial space. Acta physiol. scand. (Stockh.) 11, 37–47 (1946) (b).

    Google Scholar 

  • Ladenburg, R.: Über innere Reibung zäher Flüssigkeiten und ihre Abhängigkeit vom Druck. Ann. Physik. 22, 287–309 (1907) (a).

    Google Scholar 

  • — Über den Einfluß von Wänden auf die Bewegung einer Kugel in einer reibenden Flüssig keit. Ann. Physik. 23, 447–458 (1907) (b)

    Google Scholar 

  • Laidler, K. J., and K. E. Shuler: The kinetics of membrane processes. I. The mechanism and the kinetic laws for diffusion through membranes. II. Theoretical pressuretime relationships for permeable membranes. J. Chem. Physics 17, 851–860 (1949).

    CAS  Google Scholar 

  • Lake, B. J., W. J. Simmonds and A. W. Steinbeck: The effect of foreign plasma on capillary permeability in unsensitized animals. Austral. J. Exper. Biol. a. Med. Sci. 31, 55–64 (1953).

    CAS  Google Scholar 

  • Lambert, P. P., et F. Grégoire: Hémodynamique glomérulaire et excrétion de l’hémoglobine. Arch. internat. Physiol. et Biochem. 63, 7–34 (1955).

    CAS  Google Scholar 

  • —, et C. H. de Braucourt: Hémodynamique glomérulaire et excrétion de l’hémoglobine. Arch. internat. Physiol. et Biochim. 60, 506–534 (1952).

    CAS  Google Scholar 

  • Landis, E. M.: Micro-injection studies of capillary permeability. The relation between capillary pressure and the rate at which fluid passes through the walls of single capillaries. Amer. J. Physiol. 82, 217–238 (1927).

    Google Scholar 

  • — Micro-injection studies of capillary permeability. The effect of lack of oxygen on the permeability of the capillary wall to fluid and to the plasma proteins. Amer. J. Physiol. 83, 528–542 (1928).

    CAS  Google Scholar 

  • — Micro-injection studies of capillary blood pressure in human skin. Heart 15, 209 bis 228 (1929–1931).

    Google Scholar 

  • — The capillary blood pressure in mammalian mesentery as determined by the miscroinjection method. Amer. J. Physiol. 93, 353–362 (1930).

    Google Scholar 

  • — Capillary pressure and capillary permeability. Physiologie. Rev. 14, 404–481 (1934).

    Google Scholar 

  • — Capillary permeability and the factors affecting the composition of the capillary ultrafiltrate. Ann. New York Acad. Sci. 46, 713–731 (1946).

    CAS  Google Scholar 

  • —, and J. H. Gibbon jr.: The effects of temperature and of tissue pressure on the movement of fluid through the human capillary wall. J. Clin. Invest. 12, 105–138 (1933).

    PubMed  CAS  Google Scholar 

  • Landis, E. M., and J. C. Hortenstine: Functional significance of venous pressure. Physiologic. Rev. 30, 1–32 (1950).

    CAS  Google Scholar 

  • —, L. Jonas, M. Angevine and W. Erb: The passage of fluid and protein through the human capillary wall during venous congestion. J. Clin. Invest. 11, 717–734 (1932).

    PubMed  CAS  Google Scholar 

  • Lane, J. A.: Dialysis. Chemical Engineer’s Handbook, 3. Aufl., herausgeg. von J. H. Perry. Sekt. II, S. 753–756. New York: McGraw Hill 1950.

    Google Scholar 

  • Lassen, N. A., u. O. Munck: The cerebral blood flow in man determined by the use of radioactive krypton. Acta physiol. scand. (Stockh.) 33, 30–49 (1955).

    CAS  Google Scholar 

  • Lawrence, J. H., W. F. Loomis, C. A. Tobias and F. H. Turpin: Preliminary observations on the narcotic effect of xenon with a review of values for solubilities of gases in water and oils. J. of Physiol. 105, 197–204 (1946).

    CAS  Google Scholar 

  • Lepeshkin, W. W.: Wasserfiltration durch Membranen and Membranwiderstand. Kolloid-Z. 65, 184–186 (1933).

    Google Scholar 

  • Lilienfield, L. S., E. D. Fries, E. A. Partenope and H. J. Morowitz: Transcapillary migration of heavy water and thiocyanate ion in the pulmonary circulation of normal subjects and patients with congestive heart failure. J. Clin. Invest. 34, 1–8, (1955).

    PubMed  CAS  Google Scholar 

  • Low, F. N.: The pulmonary alveolar epithelium of laboratory mammals and man. Anat. Rec. 117, 241–264 (1953).

    PubMed  CAS  Google Scholar 

  • Lucké, B., H. K. Hartline and M. McCutcheon: Further studies on the kinetics of osmosis in living cells. J. Gen. Physiol. 14, 405–419 (1930/31).

    Google Scholar 

  • —, and M. McCutcheon: The living cell as an osmotic system and its permeability to water. Physiologic. Rev. 12, 68–139 (1932).

    Google Scholar 

  • Madden, S. C., and G. H. Whipple: Plasma proteins: their source, production and utilization. Physiologic. Rev. 20, 194–217 (1940).

    CAS  Google Scholar 

  • Man, E. B., and J. P. Peters: Permeability of capillaries to plasma lipoids. J. Clin. Invest. 12, 1031–1039 (1933).

    PubMed  CAS  Google Scholar 

  • Manegold, E.: Die Dialyse durch Kollodiummembranen und der Zusammenhang zwischen Dialyse, Diffusion und Membranstruktur. Kolloid-Z. 49, 372–395 (1929).

    CAS  Google Scholar 

  • — Über Kapillärsysteme. Die Durchlässigkeit kanal-, gerüst-und netzartiger Kapillärsysteme für Flüssigkeiten und Gase (Theoretischer Teil). Kolloid-Z. 81, 164–179 (1937).

    CAS  Google Scholar 

  • —, u. R. Hofmann: Über Kollodiummembranen. Die Durchlässigkeit der Membranen für Wasser. Kolloid-Z. 50, 22–39 (1930).

    CAS  Google Scholar 

  • Marble, A., M. E. Field, C. K. Drinker and R. M. Smith: The permeability of the blood capillaries to lipoids. Amer. J. Physiol. 109, 467–474 (1934).

    CAS  Google Scholar 

  • Marshall, M. E., and H. F. Deutsch: Clearances of some proteins by the dog kidney. Amer. J. Physiol. 163, 461–467 (1950).

    PubMed  CAS  Google Scholar 

  • Martin, E. G., E. C. Woolley and M. Miller: Capillary counts in resting and active muscles. Amer. J. Physiol. 100, 407–416 (1932).

    Google Scholar 

  • McBain, J. W., and T. H. Liu: Diffusion of electrolytes, non-electrolytes and colloidal electrolytes. J. Amer. Chem. Soc. 53, 59–74 (1931).

    Google Scholar 

  • McDonald, R. K., J. H. Miller and E. B. Roach: Human glomerular permeability and tubular recovery values for hemoglobin. J. Clin. Invest. 30, 1041–1045 (1951).

    PubMed  CAS  Google Scholar 

  • McLennan, C. E., M. T. McLennan and E. M. Landis: The effect of external pressure on the vascular volume of the forearm and its relation to capillary blood pressure and venous pressure. J. Clin. Invest. 21, 319–338 (1942).

    PubMed  CAS  Google Scholar 

  • McMaster, P. D.: Ann. New York Acad. Sci. 56, 679 (1946).

    Google Scholar 

  • Menkin, V.: Effect of adrenal cortex extract on capillary permeability. Amer. J. Physiol. 129, 691–697 (1940).

    CAS  Google Scholar 

  • Merrell, M., A. Gellhorn and L. B. Flexner: The exchange of sodium in the guinea pig. J. of Biol. Chem. 153, 83–89 (1944).

    CAS  Google Scholar 

  • Meschia, G.: A rigid membrane for measurement of colloidal osmotic pressure with the Hepp osmometer. Yale J. Biol. a. Med. 27, 206–212 (1954).

    CAS  Google Scholar 

  • Miller, L. L., W. F. Bale, C. L. Yuile, R. E. Masters, G. H. Tishkoff and G. H. Whipple: The use of radioactive lysine in studies of protein metabolism. Synthesis and utilization of plasma proteins. J. of Exper. Med. 90, 297–313 (1949). *** DIRECT SUPPORT *** A0535004 00013

    CAS  Google Scholar 

  • Monke, J. V., and C. L. Yuile: The renal clearance of hemoglobin in the dog. J. of Exper. Med. 72, 149–165 (1940).

    CAS  Google Scholar 

  • Morales, M. F., and R. E. Smith: A note on the physiological arrangement of tissues. Bull. Math. Biophysics 7, 47–51 (1945) (a).

    Google Scholar 

  • —: The physiological factors which govern inert gas exchange. Bull. Math. Biophysics 7, 99–106 (1945) (b).

    Google Scholar 

  • Morel, F. F.: Techniques de la mesure des échange capillaires à l’aide des indicateurs radioactifs. Helvet. physiol. Acta 8, 52–73 (1950).

    CAS  Google Scholar 

  • Morris, B., and F. C. Courtice: The protein and lipid composition of the plasma of different animal species determined by zone electrophoresis and chemical analysis. Quart. J. Exper. Physiol. 40, 127–137 (1955) (a).

    CAS  Google Scholar 

  • —: Lipid exchange between plasma and lymph in experimental lipaemia. Quart. J. Exper. Physiol. 40, 149–160 (1955) (b).

    CAS  Google Scholar 

  • Northrop, H. J.: Kinetics of the swelling of cells and tissues. J. Gen. Physiol. 11, 43–56 (1927).

    PubMed  CAS  Google Scholar 

  • —, and M. L. Anson: A method for the determination of diffusion constants and the calculation of the radius and weight of the hemoglobin molecule. J. Gen. Physiol. 12, 543–554 (1929).

    Google Scholar 

  • —, and M. Kunitz: The swelling of isoelectric gelatin in water. J. Gen. Physiol. 10, 905 bis 926 (1927).

    Google Scholar 

  • Oncley, J. L.: Lipoproteins of human plasma. Harvey Lect. 1954/55.

    Google Scholar 

  • Osterhout, W. J. V.: Permeability in large plant cells and in models. Erg. Physiol. 35, 967–1021 (1933).

    Google Scholar 

  • — Some models of protoplasmic surfaces. Cold Spring Harbor Symp. Quant. Biol. 8, 51–62 (1940).

    CAS  Google Scholar 

  • Overman, R. R., A. K. Davis and A. C. Bass: Effects of cortisone and DCA on radiosodium transport in normal and adrenalextomized dogs. Amer. J. Physiol. 167, 333–340 (1951).

    PubMed  CAS  Google Scholar 

  • Overton, E.: Beiträge zur allgemeinen Muskel-und Nervenphysiologie. Pflügers Arch. 92, 115–280 (1902).

    Google Scholar 

  • Paff, G. H.: A quantitative study of the capillary supply in certain mammalian skeletal muscles. Anat. Rec. 46, 401–406 (1930).

    Google Scholar 

  • Palmer, G. H., and G. H. Joseph: Capillary permeability: perfusion of frog and guinea pig hindlimbs. Amer. J. Physiol. 146, 126–132 (1946).

    PubMed  CAS  Google Scholar 

  • Pappenheimer, J. R.: Vasoconstrictor nerves and oxygen consumption in the isolated perfused hindlimb muscles of the dog. J. of Physiol. 99, 182 (1941).

    CAS  Google Scholar 

  • — Passage of molecules through capillary walls. Physiologic. Rev. 33, 387–423 (1953).

    CAS  Google Scholar 

  • Pappenheimer, J. R.: Über die Permeabilität der Glomerulummembranen in der Niere. Klin. Wschr. 1955, 362–365.

    Google Scholar 

  • —, E. M. Renkin and L. M. Borrero: Filtration, diffusion and molecular sieving through peripheral capillary membranes. A contribution to the pore theory of capillary permeability. Amer. J. Physiol. 167, 13–46 (1951).

    PubMed  CAS  Google Scholar 

  • —, and A. Soto-Rivera: Effective osmotic pressure of the plasma proteins and other quantitites associated with the capillary circulation in the hindlimbs of cats and dogs. Amer. J. Physiol. 152, 471–491 (1948).

    PubMed  CAS  Google Scholar 

  • Pease, D. C., and R. F. Baker: Electron microscopy of the kidney. Amer. J. Anat. 87, 349–390 (1950).

    PubMed  CAS  Google Scholar 

  • Perry, I. H.: Vital injection as a method for the study of the capillary circulation. Skand. Arch. Physiol. (Berl. u. Lpz.) 59, 67–74 (1930).

    CAS  Google Scholar 

  • Pisa, M.: Versuche zur Porenstatistik und Siebwirkung bei Ultrafiltern und tierischen Membranen. Kolloid-Z. 63, 139–148 (1933).

    CAS  Google Scholar 

  • Potvin, L.: Le sort immédiat des protéines plasmatiques injectées chez le chien. Arch. internat. Physiol. 59, 157–164 (1951).

    PubMed  CAS  Google Scholar 

  • Prentice, T. C., R. R. Stahl, N. A. Dial and F. V. Pontiero: A study of the relationsship between radioactive sodium clearance and directly measured blood flow in the biceps muscle of the dog. J. Clin. Invest. 34, 545–558 (1955).

    PubMed  CAS  Google Scholar 

  • Reid, R. T. W.: Observations on the structure of the renal glomerulus of the mouse revealed by the electron microscope. Austral. J. Exper. Biol. a. Med. Sci. 32, 235–240 (1954).

    CAS  Google Scholar 

  • Rein, H.: Vasomotorische Regulationen. Erg. Physiol. 23, 28–72 (1931).

    Google Scholar 

  • Renkin, E. M.: Capillary permeability to lipid-soluble molecules. Amer. J. Physiol. 168, 538–545 (1952).

    PubMed  CAS  Google Scholar 

  • — Capillary and cellular permeability to some compounds reated to antipyrine. Amer. J. Physiol. 173, 125–130 (1953).

    PubMed  CAS  Google Scholar 

  • — Filtration, diffusion and molecular sieving through porous cellulose membranes. J. Gen. Physiol. 38, 225–243 (1954).

    PubMed  CAS  Google Scholar 

  • — Effects of blood flow on diffusion kinetics in isolated perfused hindlegs of cats. Amer. J. Physiol. 183, 125–136 (1955).

    PubMed  CAS  Google Scholar 

  • —, and B. D. Zaun: Effects of adrenal hormones on capillary permeability in perfused rat tissues. Amer. J. Physiol. 180, 498–502 (1955).

    PubMed  CAS  Google Scholar 

  • Rhodin, J.: Electron microscopy of the glomerular capillary wall. Exper. Cell Res. 8, 572–574 (1955).

    CAS  Google Scholar 

  • Robinson, D. S.: The chemical composition of chylomicra in the rat. Quart. J. Exper. Physiol. 40, 112–126 (1955).

    CAS  Google Scholar 

  • Roughton, F. J. W.: The average time spent by the blood in the human lung capillary. Amer. J. Physiol. 143, 621–633 (1945).

    CAS  Google Scholar 

  • — Diffusion and chemical reaction velocity in cylindrical and spherical systems of physiological interest. Proc. Roy. Soc. Lond., Ser. B 140, 203–229 (1952).

    CAS  Google Scholar 

  • Rous, P., H. P. Gilding and F. Smith: The gradient of vascular capillary permeability. J. of Exper. Med. 51, 807–830 (1930).

    CAS  Google Scholar 

  • Saslow, G.: The relation between the oxygenation of fluids and the occurrence of edema in the perfused frog web. Amer. J. Physiol. 124, 360–368 (1938).

    CAS  Google Scholar 

  • Scherp, H. W.: The diffusion coefficient of crystalline trypsin. J. Gen. Physiol. 16, 795–800 (1933).

    PubMed  CAS  Google Scholar 

  • Schiller, A. A., R. W. Schayer and E. L. Hess: Fluorescein-conjugetad bovine albumin. J. Gen. Physiol. 36, 489–506 (1953).

    PubMed  CAS  Google Scholar 

  • Schloerbs, P. E., B. J. Friis-Hansen, I. S. Edelman, A. K. Solomon and F. D. Moore: The measurement of total body water in the human subject by deuterium oxide dilution with a consideration of the dynamics of deuterium distribution. J. Clin. Invest. 29, 1296–1310 (1950).

    Google Scholar 

  • Schmidt, G. W.: A mathematical theory of capillary exchange as a function of tissue structure. Bull. Math. Biophysics 14, 229–263 (1952).

    CAS  Google Scholar 

  • — The time course of capillary exchange. Bull. Math. Biophysics 15, 477–488 (1953).

    CAS  Google Scholar 

  • Semple, R. E.: Effect of small infusions of various dextran solutions on normal animals. Amer. J. Physiol. 176, 113–119 (1954).

    PubMed  CAS  Google Scholar 

  • Shaffer, C. B., F. H. Critchfield and C. P. Carpenter: Renal excretion and volume distribution of some polyethylene glycols in the dog. Amer. J. Physiol. 152, 93–99 (1948).

    PubMed  CAS  Google Scholar 

  • Shapiro, H., and A. K. Parpart: The osmotic properties of rabbit and human leucocytes. J. Cellul. a. Comp. Physiol. 10, 147–160 (1937).

    CAS  Google Scholar 

  • Sheatz, G. C., and W. S. Wilde: Transcapillary exchange rates and volume of distribution of sulfate and sodium as indicated by S35 O4 and Na24 in the rat. Amer. J. Physiol. 162, 687–694 (1950).

    PubMed  CAS  Google Scholar 

  • Sheppard, C. W., R. R. Overman, W. S. Wilde and W. C. Sangren: The disappearance of K42 from the nonuniformally mixed circulation pool in dogs. Circulation Res. 1, 284–297 (1953).

    PubMed  CAS  Google Scholar 

  • Shleser, I. H., and S. C. Freed: The effect of peptone on capillary permeability and its neutralization by adrenal cortical extracts. Amer. J. Physiol. 137, 426–430 (1942).

    CAS  Google Scholar 

  • Shuler, K. E., C. A. Dames and K. J. Laidler: The diffusion of various nonelectrolytes through collodion membranes. J. Chem. Physics 17, 860–865 (1949).

    CAS  Google Scholar 

  • Sjöstrand, T.: On the principles for the distribution of the blood in the peripheral vascular system. Skand. Arch. Physiol. (Berl. u. Lpz.) 71, Suppl. 5, 1–150 (1935).

    Google Scholar 

  • Smith, H. W.: The kidney, Structure and function in health and disease. Oxford u. London 1951.

    Google Scholar 

  • Smith, R. E., and M. F. Morales: On the theory of blood-tissue exchanges. I. Fundamental equations. Bull. Math. Biophysics 6, 125–131 (1944) (a).

    Google Scholar 

  • —: On the theory of blood-tissue exchanges. II. Applications. Bull. Math. Biophysics 6, 133–139 (1944) (b).

    Google Scholar 

  • Soberman, R. J.: A comparison of total body water as determined by antipyrine and by desiccation in rabbits. Proc. Soc. Exper. Biol. a. Med. 71, 172–173 (1949).

    CAS  Google Scholar 

  • Starling, E. H.: Physiological factors involved in the causation of dropsy. Lancet 1896 I, 1267–1270 (a).

    Google Scholar 

  • — On the absorption of fluids from the connective tissue spaces. J. of Physiol. 19, 312–326 (1896) (b).

    CAS  Google Scholar 

  • — The fluids of the body, S. 67–68. Chicago: Univ. Chicago Press 1909.

    Google Scholar 

  • Starr jr. I.: The production of albuminuria by renal vasoconstriction in animals and in man. J. of Exper. Med. 43, 31–51 (1926).

    CAS  Google Scholar 

  • Staverman, A. J.: The theory of measurement of osmotic pressure. Rec. Trav. chim. Pays-Bas 70, 344–352 (1951).

    CAS  Google Scholar 

  • — Apparent osmotic pressure of solutions of heterodisperse polymeres. Rec. Trav. chim. Pays-Bas 71, 623–633 (1952).

    CAS  Google Scholar 

  • Sterling, K.: The turnover rate of serum albumin in man as measured by I131-tagged albumin. J. Clin. Invest. 30, 1228–1237 (1951).

    PubMed  CAS  Google Scholar 

  • Stewart, D. R., and M. H. Jacobs: The permeability of the egg of arbacia to ethylene glycol at different temperatures. J. Cellul. a. Comp. Physiol 2, 275–283 (1932/33).

    Google Scholar 

  • Stoel, G.: Über die Blutversorgung von weißen und roten Kaninchenmuskeln. Z. Zellforsch. 3, 91–98 (1925-26).

    Google Scholar 

  • Sullivan, R. R., and K. L. Hertel: The permeability method for determining specific surface of fibers and powders. Adv. Colloid Sci. 1, 37–80 (1942).

    CAS  Google Scholar 

  • Ussing, H. H.: Transport through biological membranes. Ann. Rev. Physiol. 15, 1–20 (1953).

    CAS  Google Scholar 

  • Verney, E. B.: Dunham Lecture, Harvard Univ., 1951, unverkündigt.

    Google Scholar 

  • Vimtrup, B. J.: On the number, shape, structure and surface area of the glomeruli in the kidneys of man and animals. Amer. J. Anat. 41, 123–151 (1928).

    Google Scholar 

  • Visscher, M. B., E. S. Fetcher jr., C. W. Carr, H. P. Gregor, M. S. Bushey and D. E. Baker: Isotopic tracer studies on the movement of water and ions between intestinal lumen and blood. Amer. J. Physiol. 142, 550–575 (1944).

    CAS  Google Scholar 

  • Waddell, W. R., R. P. Geyer, E. Clarke and F. J. Stare: Role of various organs in the removal of emulsified fat from the blood stream. Amer. J. Physiol. 175, 299–302 (1953) (b).

    PubMed  CAS  Google Scholar 

  • —, I. M. Saslaw and F. J. Stare: Normal disappearance curve of emulsified fat from the blood stream, and some factors which influence it. Amer. J. Physiol. 174, 39–42 (1953) (a).

    PubMed  CAS  Google Scholar 

  • Walder, D. N.: The relationship between blood flow, capillary surface area and sodium clearance in muscle. Clin. Sci. 14, 303–315 (1955).

    PubMed  CAS  Google Scholar 

  • Walker, W. G., and W. S. Wilde: Kinetics of radiopotassium in the circulation. Amer. J. Physiol. 170, 401–413 (1952).

    PubMed  CAS  Google Scholar 

  • Wallenius, G.: Renal clearance of dextran as a measure of glomerular permeability. Acta Soc. Med. Upsaliensis, Suppl. 4 (1954).

    Google Scholar 

  • Wang, J. H.: Measurement of self-diffusion of liquid water with O18 as tracer. J. Amer. Chem. Soc. 73, 4181 (1951).

    CAS  Google Scholar 

  • Wartiovaara, V.: Über den Einfluß der Temperatur auf die Permeabilität der Zellen von Tolypellopsis stelligera. Biochem. Z. 302, 277–279 (1939).

    CAS  Google Scholar 

  • Wasserman, K., L. Loeb and H. S. Mayerson: Capillary permeability to macromolecules. Circulations Res. 3, 594–603 (1955).

    CAS  Google Scholar 

  • —, and H. S. Mayerson: Exchange of albumin between plasma and lymph. Amer. J. Physiol. 165, 15–26 (1951).

    PubMed  CAS  Google Scholar 

  • —: Dynamics of lymph and plasma protein exchange. Cardiologia (Basel) 21, 296 bis 307 (1952).

    Google Scholar 

  • —: Relative importance of dextran molecular size in plasma volume expansion. Amer. J. Physiol. 176, 104–112 (1954).

    PubMed  CAS  Google Scholar 

  • Weech, A. A., and L. Michaelis: Studies on permeability of membranes. The diffusion of non-electrolytes through the dried collodion membrane. J. Gen. Physiol. 12, 55–81 (1928).

    PubMed  CAS  Google Scholar 

  • White, H. L., and D. Rolf: Some effects of exercise on renal circulation in man. Amer. J. Physiol. 152, 505–516 (1948).

    PubMed  CAS  Google Scholar 

  • White, J. C., M. E. Field and C. K. Drinker: On the protein content and normal flow of lymph from the foot of the dog. Amer. J. Physiol. 103, 34–44 (1933).

    CAS  Google Scholar 

  • Wilbrandt, W.: Die Permeabilität der Zelle. Erg. Physiol. 40, 204–291 (1938).

    CAS  Google Scholar 

  • — Physiologie der Zell-und Kapillärpermeabilität. Helvet. med. Acta 13, 143–157 (1946).

    PubMed  CAS  Google Scholar 

  • Wilde, W. S.: Transport through biological membranes. Annual. Rev. Physiol. 17, 17–36 (1955).

    PubMed  CAS  Google Scholar 

  • Wyckoff, R. D., H. G. Botset, M. Muskat and D. W. Reed: The measurement of permeability of porous media for homogeneous fluids. Rev. Sci. Instrum. 4, 394 bis 405 (1933).

    Google Scholar 

  • Yuile, C. L., and W. F. Clark: A study of the renal clearance of myohemoglobin in the dog. J. of Exper. Med. 74, 187–196 (1941).

    CAS  Google Scholar 

  • Zeuthen, E., u. D. M. Prescott: Comparison of water diffusion and water filtration across cell surfaces. Acta physiol. scand. (Stockh.) 28, 77–94 (1953). *** DIRECT SUPPORT *** A0535004 00014

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1957 Springer-Verlag

About this paper

Cite this paper

Renkin, E.M., Pappenheimer, J.R. (1957). Wasserdurchlässigkeit und Permeabilität der Capillarwände. In: Ergebnisse der physiologie biologischen chemie und experimentellen pharmakologie. Ergebnisse der Physiologie, biologischen Chemie und experimentellen Pharmakologie, vol 49. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0113834

Download citation

  • DOI: https://doi.org/10.1007/BFb0113834

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-02135-3

  • Online ISBN: 978-3-540-36664-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics