Skip to main content

Analytic and asymptotic methods for nonlinear singularity analysis: a review and extensions of tests for the Painlevé property

  • Conference paper
  • First Online:
Book cover Integrability of Nonlinear Systems

Part of the book series: Lecture Notes in Physics ((LNP,volume 495))

Abstract

The integrability (solvability via an associated single-valued linear problem) of a differential equation is closely related to the singularity structure of its solutions. In particular, there is strong evidence that all integrable equations have the Painlevé property, that is, all solutions are single-valued around all movable singularities. In this expository article, we review methods for analysing such singularity structure. In particular, we describe well known techniques of nonlinear regular-singular-type analysis, i.e., the Painlevé tests for ordinary and partial differential equations. Then we discuss methods of obtaining sufficiency conditions for the Painlevé property. Recently, extensions of irregular singularity analysis to nonlinear equations have been achieved. Also, new asymptotic limits of differential equations preserving the Painlevé property have been found. We discuss these also.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ablowitz, M.J. and Clarkson, P.A. (1991) “Solitons, Nonlinear Evolution Equations and Inverse Scattering,” Lond. Math. Soc. Lecture Notes Series 149, Cambridge University Press, Cambridge.

    Book  MATH  Google Scholar 

  2. Ablowitz, M.J. and Segur, H. (1981) “Solitons and the Inverse Scattering Transform,” SIAM, Philadelphia.

    MATH  Google Scholar 

  3. Ablowitz, M.J., Ramani, A. and Segur, H. (1978) Nonlinear Evolution Equations and Ordinary Differential Equations of Painlevé Type, Lett. Nuovo Cim., 23, 333–338.

    Article  MathSciNet  Google Scholar 

  4. Ablowitz, M.J., Ramani, A. and Segur, H. (1980) A Connection between Nonlinear Evolution Equations and Ordinary Differential Equations of P-type. I and II, J. Math. Phys., 21, 715–721 and 1006–1015.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Ablowitz, M.J. and Segur, H. (1977) Exact Linearization of a Painlevé Transcendent, Phys. Rev. Lett., 38, 1103–1106.

    Article  ADS  MathSciNet  Google Scholar 

  6. Arnold, V.I. (1984) Mathematical Methods of Classical Mechanics, Springer-Verlag, New York.

    Google Scholar 

  7. Abramowitz, M. and Stegun, I., eds. (1972) Handbook of Mathematical Functions, Dover, New York.

    MATH  Google Scholar 

  8. Bender, C.M. and Orszag, S.A. (1978) “Advanced Mathematical Methods for Scientists and Engineers,” McGraw-Hill, New York.

    MATH  Google Scholar 

  9. Bountis, T., Segur, H. and Vivaldi, F. (1982) Integrable Hamiltonian systems and the Painlevé property, Phys. Rev., 25A, 1257–1264.

    ADS  MathSciNet  Google Scholar 

  10. Boutroux, P. (1913) Recherches sur les transcendents de M. Painlevé et l'étude asymptotique des équations différentielles du second ordre, Ann. École Norm. Supér., 30, 255–375; 31, 99–159.

    MathSciNet  Google Scholar 

  11. Bureau, F.J. (1964) Differential equations with fixed critical points, Annali di Matematica pura ed applicata, LXVI, 1–116.

    MathSciNet  Google Scholar 

  12. Chazy, J. (1910) Sur les équations différentielles dont l'intégrale générale possède une coupure essentielle mobile, C.R. Acad. Sc. Paris, 150, 456–458.

    MATH  Google Scholar 

  13. Chazy, J. (1911) Sur les équations différentielles du troisième et d'ordre supérieur dont l'intégrale générale a ses points critiques fixés, Acta Math., 34, 317–385.

    Article  MathSciNet  MATH  Google Scholar 

  14. Coddington, E.A. and Levinson, N. (1955) Theory of Ordinary Differential Equations, McGraw-Hill, New York.

    MATH  Google Scholar 

  15. Clarkson, P.A. and Cosgrove, C.M. (1987) Painlevé analysis of the non-linear Schrödinger family of equations, J. Phys. A: Math. Gen., 20, 2003–2024.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Conte, R., Fordy, A. and Pickering, A. (1993) A perturbative Painlevé approach to nonlinear differential equations, Physica, 69D 33–58.

    ADS  MathSciNet  Google Scholar 

  17. Cosgrove, C. M., (1993) Painlevé classification of all semilinear PDEs of the second order, I Hyperbolic equations in two independent variables, II Parabolic and higher dimensional equations, Stud. Appl. Math., 89 1–61, 95–151.

    MATH  MathSciNet  Google Scholar 

  18. Fordy, A. and Pickering, A. (1991) Analysing Negative Resonances in the Painlevé Test, Phys. Lett., 160A, 347–354.

    ADS  MathSciNet  Google Scholar 

  19. Fuchs, R. (1907) Math. Annalen, 63 301–321.

    Article  MATH  Google Scholar 

  20. Gambier B. (1910) Sur les équations différentielles du second ordre et du premier degré dont l'intégrale générale est à points critiques fixes, Acta Math., 33, 1–55.

    Article  MathSciNet  Google Scholar 

  21. Gardner, C.S., Greene, J.M., Kruskal, M.D. and Miura, R.M. (1967) Method for Solving the Korteweg-de Vries Equation, Phys. Rev. Lett., 19, 1095–1097.

    Article  MATH  ADS  Google Scholar 

  22. Grimshaw, R. (1979) Slowly Varying Solitary Waves. I. Korteweg-de Vries Equation, Proc. R. Soc. Lond., 368A, 359–375.

    ADS  MathSciNet  Google Scholar 

  23. Halburd, R. (1996) Integrable Systems; their singularity structure and coalescence limits, PhD thesis, University of New South Wales.

    Google Scholar 

  24. Halburd, R. and Joshi, N. (1996) The Coalescence Limit of the Second Painlevé Equation (to appear in Stud. Appl. Math.).

    Google Scholar 

  25. Halburd, R. and Joshi, N. (1996) Coalescence Limits of Integrable Partial Differential Equations, in preparation.

    Google Scholar 

  26. Halphen, G. (1881) Sur un système d'équations différentielles, C.R. Acad. Sc. Paris, 92, 1101–1103 and 1404–1407 [Œuvres (1918), Paris, 2 475–477 and 478–481].

    Google Scholar 

  27. Ince, E.L. (1956) “Ordinary Differential Equations,” Dover, New York.

    Google Scholar 

  28. Hlavatý, L. (1987) The Painlevé analysis of damped KdV equation, J. Phys. Soc. Japan, 55, 1405–1406.

    ADS  Google Scholar 

  29. Hlavatý, L. (1991) Painlevé classification of PDEs, in Proc. of NATO Advanced Research Workshop, P. Winternitz and D. Levi, eds, Ste Adèle, Quebec (Sept. 2–7, 1990), Plenum Publishing Co.

    Google Scholar 

  30. Joshi, N. (1987) Painlevé property of general variable-coefficient versions of the Korteweg-de Vries and nonlinear Schrödinger equations, Phys. Lett., 125A, 456–460.

    ADS  Google Scholar 

  31. Joshi, N. and Kruskal, M. (1992) A Direct Proof that Solutions of the First Painlevé Equation have no Movable Singularities except Poles, in “Nonlinear Evolution Equations and Dynamical Systems” (Baia Verde, 1991), Boiti, M., Martina, L., and Pempinelli, F., eds. World Sci. Publishing, River Edge, NJ, 310–317.

    Google Scholar 

  32. Joshi, N. and Kruskal, M.D. (1993) A New Coalescence of Movable Singularities in the Fourth Painlevé Equation, University of New South Wales Applied Mathematics Report, AM93/11.

    Google Scholar 

  33. Joshi, N. and Kruskal, M.D. (1993) A Local Asymptotic Method of Seeing the Natural Barrier of the Solutions of the Chazy Equation, in “Applications of Analytic and Geometric Methods to Nonlinear Differential Equations” (Exeter, 1992), NATO Adv. Sci. Inst. Ser. C, Math. Phys. Sci., 413, Kluwer Acad. Publ., Dordrecht, 331–339.

    Google Scholar 

  34. Joshi, N. and Kruskal, M.D. (1994) A Direct Proof that Solutions of the Six Painlevé Equations have no Movable Singularities Except Poles, Stud. Appl. Math., 93, 187–207.

    MATH  MathSciNet  Google Scholar 

  35. Joshi, N. and Petersen, J.A. (1996) Complex blow-up in Burgers’ equation: an iterative approach, Bull. Austral. Math. Soc., 54, 353–362.

    Article  MATH  MathSciNet  Google Scholar 

  36. Joshi, N. and Petersen, J.A. (1994) A Method for Proving the Convergence of the Painlevé Expansions of Partial Differential Equations, Nonlinearity, 7, 595–602.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  37. Joshi, N. and Petersen, J.A. (1996) Nonexistence Results Consistent with the Global Painlevé Property of the Korteweg-de Vries Equation (to appear).

    Google Scholar 

  38. Joshi, N. and Srinivasan, G.K. (1997) The Radius of Convergence and the Well-Posedness of the Painlevé Expansions of the Korteweg-de Vries Equation, Nonlinearity (to appear).

    Google Scholar 

  39. Kowalevski, S. (1889a) Sur le problème de la rotation d'un corps solide autour d'un point fixe, Acta Math., 12, 177–232.

    Article  MathSciNet  Google Scholar 

  40. Kichenassamy, S. and Littman, W. (1993) Blow-up surfaces for nonlinear wave equations I, II, Comm. PDEs, 18 431–452 and 1869–1899.

    Article  MATH  MathSciNet  Google Scholar 

  41. Kichenassamy, S. and Srinivasan, G. (1995) The structure of WTC expansions and applications, J. Phys. A, 28 1977–20004.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  42. Kowalevski, S. (1889b) Sur une propriété d'un système d'équations différentielles qui définit la rotation d'un corps solide autour d'un point fixe, Acta Math., 14, 81–93.

    Article  MathSciNet  Google Scholar 

  43. Kruskal, M.D. (1963) Asymptotology, in “Mathematical Models in Physical Sciences”, Dobrot, S., ed, Prentice-Hall, Englewood Cliffs, New Jersey, 17–48.

    Google Scholar 

  44. Kruskal, M.D. (1992) Flexibility in Applying the Painlevé Test, in “Painlevé Transcendents — their Asymptotics and Physical Applications” Levi, D. and Winternitz, P., eds, NATO ASI Series B: Physics, 278, Plenum Press, New York.

    Google Scholar 

  45. Kruskal, M.D. and Clarkson, P.A. (1992) The Painlevé-Kowalevski and Poly-Painlevé Tests for Integrability, Stud. Appl. Math., 86, 87–165.

    MATH  MathSciNet  Google Scholar 

  46. Kruskal, M.D. and Joshi, N. (1991) Soliton theory, Painlevé property and integrability, in Chaos and Order, Proceedings of the Miniconference of the Centre for Mathematical Analysis, Australian National University (Feb. 1–3, 1990), Joshi, N. and Dewar, R.L., eds, World Scientific Publishing Co., Singapore, 82–96.

    Google Scholar 

  47. Ludlow, D.K. and Clarkson, P.A. (1993) Symmetry Reductions and Exact Solutions for a Generalised Boussinesq Equation in “Applications of Analytic and Geometric Methods to Nonlinear Differential Equations”, P.A. Clarkson, ed., NATO ASI Series C, 413, Kluwer, Dordrecht, 415–430.

    Google Scholar 

  48. Mason, L.J. and Woodhouse, N.M.J. (1993) Self-Duality and the Painlevé Transcendents Nonlinearity, 6, 569–581.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  49. McLeod, J.B. and Olver, P.J. (1983) The Connection Between Partial Differential Equations Soluble by Inverse Scattering and Ordinary Differential Equations of Painlevé Type, SIAM J. Math. Anal., 14, 488–506.

    Article  MATH  MathSciNet  Google Scholar 

  50. Nehari, Z. (1952) “Conformal Mapping,” McGraw-Hill, New York

    MATH  Google Scholar 

  51. Newell, A. C., Tabor, M. and Zheng, Y., (1987), A unified approach to Painlevé expansions, Physica, 29D, 1–68.

    ADS  Google Scholar 

  52. Olver, F.W.J. (1992), “Asymptotics and Special Functions,” Academic Press, London.

    Google Scholar 

  53. Painlevé, P. (1888) Sur les équations différentielles du premier ordre, C.R. Acad. Sc. Paris, 107, 221–224, 320–323, 724–726.

    Google Scholar 

  54. Painlevé, P. (1900) Mémoire sur les équations différentielles dont l'intégrale générale est uniforme, Bull. Soc. Math. France, 28, 201–261.

    MathSciNet  MATH  Google Scholar 

  55. Painlevé, P. (1902) Sur les équations différentielles du second ordre et d'ordre supérieur dont l'intégrale générale est uniforme, Acta Math., 25, 1–85.

    Article  MathSciNet  Google Scholar 

  56. Painlevé, P. (1906) Sur les équations différentielles du second ordre à points critiques fixes, C. R. Acad. Sc. Paris, 143, 1111–1117.

    Google Scholar 

  57. Ramani, A., Dorizzi, B. and Grammaticos, B. (1984) Integrability and the Painlevé property for low-dimensional systems, J. Math. Phys., 25, 878–883.

    Article  ADS  MathSciNet  Google Scholar 

  58. Ramani, A., Grammaticos, B. and Bountis, T. (1989) The Painlevé property and singularity analysis of integrable and non-integrable systems, Phys. Rep., 180, 159–245.

    Article  ADS  MathSciNet  Google Scholar 

  59. Weiss, J., Tabor, M. and Carnevale, G. (1983) The Painlevé Property for Partial Differential Equations, J. Math. Phys., 24, 522–526.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  60. Yoshida, H. (1983), Necessary condition for the existence of algebraic first integrals: I, II, Celes. Mech., 31, 363–379; 381–399.

    Article  MATH  ADS  Google Scholar 

  61. Ziglin, S. (1983), Branching of solutions and nonexistence of first integrals in Hamiltonian mechanics; I, II, Func. Anal. Appl., 16 181–189; 17, 6–17.

    Article  Google Scholar 

  62. Ziglin, S. (1982), Self-intersection of the complex separatrices and the nonexistence of the integrals in the Hamiltonian systems with one-and-half degrees of freedom, J. Appl. Math. Mech., 45 411–413.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Y. Kosmann-Schwarzbach B. Grammaticos K. M. Tamizhmani

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag

About this paper

Cite this paper

Kruskal, M.D., Joshi, N., Halburd, R. (1997). Analytic and asymptotic methods for nonlinear singularity analysis: a review and extensions of tests for the Painlevé property. In: Kosmann-Schwarzbach, Y., Grammaticos, B., Tamizhmani, K.M. (eds) Integrability of Nonlinear Systems. Lecture Notes in Physics, vol 495. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0113696

Download citation

  • DOI: https://doi.org/10.1007/BFb0113696

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63353-2

  • Online ISBN: 978-3-540-69521-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics