Skip to main content

Integrability — and how to detect it

  • Conference paper
  • First Online:
Integrability of Nonlinear Systems

Part of the book series: Lecture Notes in Physics ((LNP,volume 495))

Abstract

We present a physicist’s approach to integrability and its detection. Starting from specific examples we present a working definition of what is meant by “integrability”. The integrability detector on which this whole course in based is the “Painlevé method” which links the integrable character of a (differential) system to the singularity structure of its solutions. Recent results on integrable discrete systems are also discussed here. They are, for the major part, obtained through the application of the “singularity confinement” approach that is the discrete equivalent of the Painlevé method. Foremost among these results are the discrete Painlevé equations that generalize in the discrete domain the transcendental functions introduced by Painlevé and which have so many interesting applications in the domain of nonlinear physics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Although the present notes on integrability detectors can stand by themselves the reader can find a wealth of information on integrable systems, as well as a detailed bibliography, in the book of M.J. Ablowitz and P.A. Clarkson Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge University Press, 1992.

    Google Scholar 

  2. H. Poincaré, Les méthodes nouvelles de la Mécanique Céleste, Gauthier Villars, Paris (1892).

    Google Scholar 

  3. S. Novikov, Math. Intel. 14 (1992) 13.

    Article  Google Scholar 

  4. We refer here to the famous Kolmogorov-Arnold-Moser (KAM) theorem and its applications in the study on near-integrable systems.

    Google Scholar 

  5. H. Segur, Physica D51 (1991) 343. We must point out here that the title of this section has been anashamedly stolen from this article of Segur.

    ADS  MathSciNet  Google Scholar 

  6. F. Calogero, in What is Integrability?, ed., V. Zakharov, Springer, New York, (1990) 1.

    Google Scholar 

  7. A.S. Fokas, Physica D87 (1995) 145.

    ADS  MathSciNet  Google Scholar 

  8. E. T. Whittaker, Analytical Dynamics of Particles, Cambridge U.P., Cambridge, (1959).

    Google Scholar 

  9. R. Conte, in An introduction to methods of complex analysis and geometry for classical mechanics and nonlinear waves, eds., D. Benest and C. Froeschlé, Editions Frontières, Gif-sur-Yvette (1994).

    Google Scholar 

  10. H. Yoshida, B. Grammaticos, A. Ramani, Acta Appl. Math. 8 (1987) 75.

    Article  MATH  MathSciNet  Google Scholar 

  11. L. Fuchs, Sitz. Akad. Wiss. Berlin, 32 (1884) 669.

    Google Scholar 

  12. P. Painlevé, C. R. Acad. Sc. Paris, 107 (1888) 221, 320, 724.

    Google Scholar 

  13. S. Kovalevskaya, Acta Math. 12 (1889) 177.

    Article  MathSciNet  Google Scholar 

  14. D.J. Korteweg and G. de Vries, Philos. Mag. Ser 5, 39 (1895) 422.

    Google Scholar 

  15. P. Painlevé, Acta Math. 25 (1902) 1.

    Article  MathSciNet  Google Scholar 

  16. B. Gambier, Acta Math. 33 (1909) 1.

    Article  MathSciNet  MATH  Google Scholar 

  17. J. Chazy, Acta Math. 34 (1911) 317.

    Article  MathSciNet  MATH  Google Scholar 

  18. R. Garnier, Ann. Sci. Ecole Norm. Sup. 29 (1912) 1.

    MathSciNet  Google Scholar 

  19. E. Fermi, J. Pasta and S. Ulam, Studies of nonlinear problems, Los Alamos Report LA1940 (1955).

    Google Scholar 

  20. N.J. Zabusky and M.D. Kruskal, Phys. Rev. Lett. 15 (1965) 240.

    Article  ADS  MATH  Google Scholar 

  21. C.S. Gardner, J.M. Greene, M.D. Kruskal and R. Miura, Phys. Rev. Lett. 19 (1967) 1095.

    Article  MATH  ADS  Google Scholar 

  22. R. Miura, J. Math. Phys. 9 (1968) 1202.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. R. Hirota, Phys. Rev. Lett. 27 (1971) 1192.

    Article  ADS  MATH  Google Scholar 

  24. P.D. Lax, Commun. Pure Appl. Math. 21 (1968) 467.

    Article  MATH  MathSciNet  Google Scholar 

  25. M. Toda, J. Phys. Soc. Japan, 22 (1967) 431.

    Article  ADS  Google Scholar 

  26. V.E. Zakharov and A.B. Shabat, Sov. Phys. JETP 34 (1972) 62.

    MathSciNet  ADS  Google Scholar 

  27. M.J. Ablowitz, D.J. Kaup, A.C. Newell and H. Segur, Phys. Rev. Lett. 30 (1973) 1262.

    Article  ADS  MathSciNet  Google Scholar 

  28. M.J. Ablowitz and H. Segur, Phys. Rev. Lett. 38 (1977) 1103.

    Article  ADS  MathSciNet  Google Scholar 

  29. M.J. Ablowitz, A. Ramani and H. Segur, Lett. Nuov. Cim. 23 (1978) 333.

    Article  MathSciNet  Google Scholar 

  30. J. Weiss, M. Tabor and G. Carnevale, J. Math. Phys. 24 (1983) 522.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  31. M.D. Kruskal and P.A. Clarkson, Stud. Appl. Math. 86 (1992) 87.

    MATH  MathSciNet  Google Scholar 

  32. M.D. Kruskal, summary talk at the “Kruskal Symposium”, Boulder (1995).

    Google Scholar 

  33. This section is directly inspired from our course at les Houches 89, M.D. Kruskal, A. Ramani and B. Grammaticos, NATO ASI Series C 310, Kluwer 1989, 321.

    Google Scholar 

  34. A. Ramani, B. Grammaticos, B. Dorizzi and T. Bountis, J. Math. Phys. 25 (1984) 878.

    Article  ADS  MathSciNet  Google Scholar 

  35. B. Dorizzi, B. Grammaticos and A. Ramani, J. Math. Phys. 25 (1984) 481.

    Article  ADS  MathSciNet  Google Scholar 

  36. H. Yoshida, Celest. Mech. 31 (1983) 363 and 381.

    Article  MATH  ADS  Google Scholar 

  37. B. Grammaticos, J. Moulin-Ollagnier, A. Ramani, J.-M. Strelcyn and S. Wojciechowski, Physica 163A (1990) 683.

    ADS  MathSciNet  Google Scholar 

  38. M. Adler and P. van Moerbecke, Algebraic completely integrable systems: a systematic approach, Perspectives in Mathematics, Academic Press, New York, (1988).

    Google Scholar 

  39. E. Gutkin, Physica 16D (1985) 235.

    ADS  Google Scholar 

  40. H. Yoshida, A. Ramani, B. Grammaticos and J. Hietarinta, Physica 144A (1987), 310.

    ADS  MathSciNet  Google Scholar 

  41. P. J. Richens and M. V. Berry, Physica 2D (1981) 495.

    ADS  MathSciNet  Google Scholar 

  42. A. Ramani, A. Kalliterakis, B. Grammaticos and B. Dorizzi, Phys. Lett. A 115 (1986) 25.

    Article  ADS  MathSciNet  Google Scholar 

  43. J. Hietarinta, Phys. Rep. 147 (1987), 87.

    Article  ADS  MathSciNet  Google Scholar 

  44. V. Ravoson, A. Ramani and B. Grammaticos, Phys. Lett. A191 (1994) 91.

    ADS  MathSciNet  Google Scholar 

  45. M. Hénon, Numerical exploration of Hamiltonian systems in Les Houches 1981, North Holland (1983) 55.

    Google Scholar 

  46. A. Ramani, B. Grammaticos and T. Bountis, Phys. Rep. 180 (1989) 159.

    Article  ADS  MathSciNet  Google Scholar 

  47. E.L. Ince, Ordinary Differential Equations, Dover, London, (1956).

    Google Scholar 

  48. M.J. Ablowitz, A. Ramani and H. Segur, J. Math. Phys. 21 (1980) 715 and 1006.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  49. A. Ramani, B. Dorizzi and B. Grammaticos, Phys. Rev. Lett., 49 (1982) 1539.

    Article  ADS  MathSciNet  Google Scholar 

  50. Exceptions to this empirical rule are known to exist, Chazy's equation [17] being the best known example where no generic leading behaviour seem to exist.

    Google Scholar 

  51. C. Briot and J.C. Bouquet, J. École Imp. Polytech. 21 (1856) 36.

    Google Scholar 

  52. F. Bureau, A. Garcet and J. Goffar, Ann. Mat. Pura Appl. 92 (1972) 177.

    Article  MATH  MathSciNet  Google Scholar 

  53. F. Bureau, Ann. Mat. Pura Appl. 91 (1972) 163.

    MATH  MathSciNet  Google Scholar 

  54. C.M. Cosgrove and G. Scoufis, Stud Appl. Math.

    Google Scholar 

  55. C.M. Cosgrove, Stud. Appl. Math. 90 (1993) 119.

    MATH  MathSciNet  Google Scholar 

  56. R.S. Ward, Phys. Lett. 102A (1984), 279.

    ADS  Google Scholar 

  57. M. Jimbo, M.D. Kruskal and T. Miwa, Phys. Lett. 92A (1982) 59.

    ADS  MathSciNet  Google Scholar 

  58. M. Musette and R. Conte, J. Math. Phys. 32 (1991) 1450.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  59. M.D. Kruskal, Flexibility in applying the Painlevé test, NATO ASI B278, Plenum (1992) 187.

    Google Scholar 

  60. R. Conte, A.P. Fordy and A. Pickering, Physica D 69 (1993) 33.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  61. V. A. Belinski and I. M. Khalatnikov, Sov. Phys. JETP 29 (1969) 911.

    ADS  Google Scholar 

  62. G. Contopoulos, B. Grammaticos and A. Ramani, J. Phys. A 26 (1993) 5795.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  63. G. Contopoulos, B. Grammaticos and A. Ramani, J. Phys. A 27 (1994) 5357.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  64. G. Contopoulos, B. Grammaticos and A. Ramani, J. Phys. A 28 (1995) 5313.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  65. A. Latifi, M. Musette and R. Conte, Phys. Lett. A194 (1994) 83.

    ADS  MathSciNet  Google Scholar 

  66. H. Segur, Lectures at International School “Enrico Fermi”, Varenna, Italy (1980).

    Google Scholar 

  67. M. Tabor and J. Weiss, Phys. Rev. A 24 (1981), 2157.

    Article  ADS  Google Scholar 

  68. T. Bountis, A. Ramani, B. Grammaticos and B. Dorizzi, Physica 128A (1984) 268.

    ADS  MathSciNet  Google Scholar 

  69. B. Grammaticos, B. Dorizzi and A. Ramani, J. Math. Phys. 24 (1983) 2289.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  70. R.P. Feynman, Intl. Jour. Theor. Phys. 21 (1982) 467.

    Article  MathSciNet  Google Scholar 

  71. V. Kozlov, D. Treshchëv, Billiards, AMS Vol 89, 1991.

    Google Scholar 

  72. B. Grammaticos and B. Dorizzi, Europhys. Lett. 14 (1991) 169.

    Article  ADS  Google Scholar 

  73. B. Grammaticos and B. Dorizzi, J. Math. Comp. Sim. 37 (1994) 341.

    Article  MATH  MathSciNet  Google Scholar 

  74. E. Brézin and V.A. Kazakov, Phys. Lett. 236B (1990) 144.

    ADS  Google Scholar 

  75. F.W. Nijhoff and V.G. Papageorgiou, Phys. Lett. 153A (1991) 337.

    ADS  MathSciNet  Google Scholar 

  76. M. Jimbo and T. Miwa, Proc. Jap. Acad. 56, Ser.A (1980) 405.

    Article  MathSciNet  Google Scholar 

  77. Proceedings of the Intl. Conf. Yang-Baxter equations in Paris, Int. J. Mod. Phys. B 7 (1993) Nos 21 & 22.

    Google Scholar 

  78. B. Grammaticos, A. Ramani and V.G. Papageorgiou, Phys. Rev. Lett. 67 (1991) 1825.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  79. R.J. Baxter, Exactly Solved Models in Statistical Mechanics, Acad. Press, (London) 1982.

    MATH  Google Scholar 

  80. G.R.W. Quispel, J.A.G. Roberts and C.J. Thompson, Physica D34 (1989) 183.

    ADS  MathSciNet  Google Scholar 

  81. A. Ramani, B. Grammaticos and J. Hietarinta, Phys. Rev. Lett. 67 (1991) 1829.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  82. R. Hirota, J. Phys. Soc. Jpn 50 (1981) 3785.

    Article  ADS  MathSciNet  Google Scholar 

  83. P. Wynn, Math. Tables and Aids to Computing 10 (1956) 91.

    Article  MATH  MathSciNet  Google Scholar 

  84. V.G. Papageorgiou, B. Grammaticos and A. Ramani, Phys. Lett. A179 (1993) 111.

    ADS  MathSciNet  Google Scholar 

  85. A. Ramani, B. Grammaticos and G. Karra, Physica A181 (1992) 115.

    ADS  MathSciNet  Google Scholar 

  86. B. Grammaticos, A. Ramani and K.M. Tamizhmani, Jour. Phys. A27 (1994) 559.

    ADS  MathSciNet  Google Scholar 

  87. M. Jimbo, T. Miwa and K. Ueno, Physica D2 (1981) 306.

    ADS  MathSciNet  Google Scholar 

  88. A. Ramani, B. Grammaticos, Discrete Painlevé equations: coalescences, limits and degeneracies, preprint 1995.

    Google Scholar 

  89. A.S. Fokas, B. Grammaticos and A. Ramani, J. Math. An. and Appl. 180 (1993) 342.

    Article  MATH  MathSciNet  Google Scholar 

  90. M. Jimbo and H. Sakai, A q-analog of the sixth Painlevé equation, preprint Kyoto-Math 95-16.

    Google Scholar 

  91. V.G. Papageorgiou, F.W. Nijhoff, B. Grammaticos and A. Ramani, Phys. Lett. A164 (1992) 57.

    ADS  MathSciNet  Google Scholar 

  92. A.S. Fokas and M.J. Ablowitz, J. Math. Phys. 23 (1982) 2033.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  93. A. Ramani and B. Grammaticos, Jour. Phys. A 25 (1992) L633.

    Google Scholar 

  94. K.M. Tamizhmani, B. Grammaticos and A. Ramani, Lett. Math. Phys. 29 (1993) 49.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  95. V.A. Gromak and N.A. Lukashevich, The analytic solutions of the Painlevé equations, (Universitetskoye Publishers, Minsk 1990), in Russian.

    Google Scholar 

  96. B. Grammaticos, F.W. Nijhoff, V.G. Papageorgiou, A. Ramani and J. Satsuma, Phys. Lett. A185 (1994) 446.

    ADS  MathSciNet  Google Scholar 

  97. K.M. Tamizhmani, B. Grammaticos, A. Ramani and Y. Ohta, A study of the discrete PV: Miura transformations and particular solutions, preprint 1995.

    Google Scholar 

  98. A. Ramani, B. Grammaticos and J. Satsuma, J. Phys. A 28 (1995) 4655.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  99. A. Ramani, B. Grammaticos and J. Satsuma, Phys. Lett. A169 (1992) 323.

    ADS  MathSciNet  Google Scholar 

  100. T. Miwa, Proc. Japan. Acad. 58 (1982) 9.

    MATH  MathSciNet  Google Scholar 

  101. J. Satsuma, A. Ramani and B. Grammaticos, Phys. Lett. A 174 (1993) 387.

    Article  ADS  MathSciNet  Google Scholar 

  102. A. Ramani, B. Grammaticos, The Gambier mapping, Physica A to appear.

    Google Scholar 

  103. A. Ramani, B. Grammaticos and K.M. Tamizhmani, J. Phys. A 25 (1992) L883.

    Google Scholar 

  104. A. Ramani, B. Grammaticos and K.M. Tamizhmani, J. Phys. A 26 (1993) L53.

    Google Scholar 

  105. J. Satsuma, B. Grammaticos and A. Ramani, RIMS Kokyuroku 868 (1994) 129.

    MathSciNet  Google Scholar 

  106. J. Satsuma and J. Matsukidaira, J. Phys. Soc. Japan 59 (1990) 3413.

    Article  ADS  MathSciNet  Google Scholar 

  107. J. Hietarinta and J. Satsuma, Phys. Lett. A 161 (1991) 267.

    Article  ADS  MathSciNet  Google Scholar 

  108. B. Grammaticos, A. Ramani and I.C. Moreira, Physica A196 (1993) 574.

    ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Y. Kosmann-Schwarzbach B. Grammaticos K. M. Tamizhmani

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag

About this paper

Cite this paper

Grammaticos, B., Ramani, A. (1997). Integrability — and how to detect it. In: Kosmann-Schwarzbach, Y., Grammaticos, B., Tamizhmani, K.M. (eds) Integrability of Nonlinear Systems. Lecture Notes in Physics, vol 495. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0113693

Download citation

  • DOI: https://doi.org/10.1007/BFb0113693

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63353-2

  • Online ISBN: 978-3-540-69521-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics