Advertisement

Heterotic strings in ten and four dimensions

Chapter
  • 480 Downloads
Part of the Lecture Notes in Physics book series (LNP, volume 346)

Keywords

Gauge Group Conjugacy Class Vertex Operator Heterotic String Conformal Field Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L. Alvarez-Gaumé, P. Ginsparg, G. Moore and C. Vafa, “An O(16) × O(16) heterotic string”, Phys. Lett. 171 B (1986) 155.ADSGoogle Scholar
  2. [2]
    L.J. Dixon and J.A. Harvey, “String theories in ten dimensions without space-time supersymmetry”, Nucl. Phys. B274 (1986) 93.CrossRefADSMathSciNetGoogle Scholar
  3. [3]
    W. Lerche and D. Lüst, “Covariant heterotic strings and odd self-dual lattices”, Phys. Lett. 187B (1987) 45.ADSGoogle Scholar
  4. [4]
    W. Lerche, D. Lüst and A.N. Schellekens, “Ten-dimensional heterotic strings from Niemeier lattices”, Phys. Lett. B181 (1986) 71; Erratum Phys. Lett. B184 (1987) 419.ADSGoogle Scholar
  5. [5]
    W. Lerche, D. Lüst and A.N. Schellekens, “Chiral four-dimensional heterotic strings from self-dual lattices”, Nucl. Phys. B287 (1987) 477.CrossRefADSGoogle Scholar
  6. [6]
    W. Lerche, A.N. Schellekens and N. Warner, “Lattices and Strings”, Phys. Rep. 177 (1989) 1.CrossRefADSMathSciNetGoogle Scholar
  7. [7]
    P. Candelas, G.T. Horowitz, A. Strominger and E. Witten, “Vacuum configurations for superstrings”, Nucl. Phys. B258 (1985) 46.CrossRefADSMathSciNetGoogle Scholar
  8. [8]
    L. Dixon, J. Harvey, C. Vafa and E. Witten, “Strings on orbifolds”, Nucl. Phys. B261 (1985) 651; “Strings on orbifolds 2”, Nucl. Phys. B274 (1986) 285.MathSciNetGoogle Scholar
  9. [9]
    H. Kawai, D. Lewellen and S. Tye, “Construction of four-dimensional string models”, Phys. Rev. Lett. 57 (1986) 1832; “Construction of fermionic string models in four dimensions”, Nucl. Phys. B288 (1987) 1.CrossRefADSGoogle Scholar
  10. [10]
    I. Antoniadis, C. Bachas and C. Kounnas, “Four-dimensional superstrings”, Nucl. Phys. B289 (1987) 87.CrossRefADSMathSciNetGoogle Scholar
  11. [11]
    J.H. Schwarz, “Superconformal symmetry and superstring compactification”, preprint CALT-68-1531 (1989).Google Scholar
  12. [12]
    T. Banks, L. Dixon, D. Friedan and E. Martinec, “Phenomenology and conformal field theory or can string theory predict the weak mixing angle?”, Nucl. Phys. B299 (1988) 613.CrossRefADSMathSciNetGoogle Scholar
  13. [13]
    J. Lauer, D. Lüst and S. Theisen, “Four-dimensional supergravity from four-dimensional strings”, Nucl. Phys. B304 (1988) 236.CrossRefADSGoogle Scholar
  14. [14]
    J. Lauer, D. Lüst and S. Theisen, “Supersymmetric string theories, superconformal algebras and exceptional groups”, Nucl. Phys. B309 (1988) 771.CrossRefADSGoogle Scholar
  15. [15]
    W. Lerche, “Elliptic index and superstring effective action”, Nucl. Phys. B308 (1988) 397.MathSciNetGoogle Scholar
  16. [16]
    D. Lüst and S. Theisen, “Superstring partition functions and the characters of exceptional groups”, preprint MPI-PAE/PTh 41/88, to appear in Phys. Lett B.Google Scholar
  17. [17]
    W. Lerche, A.N. Schellekens and N. Warner, “Ghost triality and superstring partition functions”, Phys. Lett. B214 (1988) 41.ADSMathSciNetGoogle Scholar
  18. [18]
    D. Lüst and S. Theisen, “Exceptional groups in string theory”, preprint CERN-TH.5256/88, to appear in Int. J. Mod. Phys. Google Scholar

Copyright information

© Springer-Verlag 1989

Personalised recommendations