Conformal field theory II: Lattices and Kac-Moody algebras

Part of the Lecture Notes in Physics book series (LNP, volume 346)


Root Lattice Conjugacy Class Vertex Operator Conformal Field Theory Fusion Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    V.G. Kac, “Simple graded algebras of finite growth”, Funct. Anal. Appl. 1 (1967) 328.Google Scholar
  2. [2]
    R.V. Moody, “Lie algebras associated with generalized Cartan matrices”, Bull. Amer. Math. Soc. 73 (1967) 217.zbMATHMathSciNetCrossRefGoogle Scholar
  3. [3]
    P. Goddard and D. Olive, “Kac-Moody and Virasoro algebras”, in ‘Advanced Series in Mathematical Physics', World Scientific (1988).Google Scholar
  4. [4]
    H. Sugawara, “A field theory of currents”, Phys. Rev. Lett. 170 (1968) 1659.ADSGoogle Scholar
  5. [5]
    P. Goddard and D. Olive, “Algebras, lattices and strings”, in ‘Vertex Operators in Mathematics and Physics', eds. J. Lepowsky, S. Mandelstam, I. Singer, Springer-Verlag (1983).Google Scholar
  6. [6]
    W. Lerche, A.N. Schellekens and N. Warner, “Lattices and Strings”, Phys. Rep. 177 (1989) 1.CrossRefADSMathSciNetGoogle Scholar
  7. [7]
    H. Niemeier, Journal of Number Theory 5 (1973) 142.zbMATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    J. Frenkel and V.G. Kac, “Basic representations of affine Lie algebras and dual resonance models”, Inv. Math. 62 (1980) 23.zbMATHCrossRefADSMathSciNetGoogle Scholar
  9. [9]
    G. Segal, “Unitary representations of some infinite dimensional groups”, Comm. Math. Phys. 80 (1981) 301.zbMATHCrossRefADSMathSciNetGoogle Scholar
  10. [10]
    S. Coleman, “Quantum sine-Gordon equation as the massive Thirring model”, Phys. Rev. D11 (1975) 2088.ADSGoogle Scholar
  11. [11]
    S. Mandelstam, “Soliton operators for the quantized sine-Gordon equation”, Phys. Rev. D11 (1975) 3026.ADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1989

Personalised recommendations