Stellar coronae

  • Jürgen H. M. M. Schmitt
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 497)


In the following chapter I will discuss recent developments in the field of X-ray astronomy of cool stars, and try to highlight some of the basic observational findings obtained with the Einstein and ROSAT satellites. In particular, coronae appear to exist around all cool stars with outer convection zones with a minimum surface flux agreeing with the X-ray flux observed from solar coronal holes. The overall X-ray output of cool stars can vary enormously from star to star with a total range of four orders of magnitude. The factor most important in determining the actual X-ray emission level for a given star appears to be its rotation rate. For young stars one observes a significant evolution of rotation in the first 108 yrs of their main sequence life times, which leads to a corresponding evolution of X-ray luminosity. I argue that magnetic fields play a very central role for the development and evolution of coronae, and consequently the theory of magnetohydrodynamics (MHD) provides the appropriate theoretical framework to describe the dynamics of coronal plasma. I describe the fundamental assumptions of MHD, and present simple models of both magnetically closed and open regions as observed on the Sun, and — by analogy — presumed to exist also on other stars.


Coronal Plasma Active Star Cool Star Angular Momentum Loss Stellar Corona 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Fleming, T. A., Giampapa, M. S., Schmitt, J. H. M. M., Bookbinder, J. A. (1993): ApJ 410, 387CrossRefADSGoogle Scholar
  2. Hempelmann, A., Schmitt, J. H. M. M., Schultz, M., Rüdiger, G., Stepień, K. (1995): A&A 294, 515ADSGoogle Scholar
  3. Longair, M. S. (1992): in High Energy Astrophysics, Vol.1, Cambridge University PressGoogle Scholar
  4. Pallavicini, R. et al. (1981) ApJ 248, 279.CrossRefADSGoogle Scholar
  5. Randich, S., Schmitt, J. H. M. M., Prosser, C. F., Stauffer, J. R. (1996): A&A 305, 785ADSGoogle Scholar
  6. Raymond, J., Smith, B. (1977): ApJS 35, 419CrossRefADSGoogle Scholar
  7. Schmitt, J. H. M. M., Fleming, T. A., Giampapa, M. S. (1995): ApJ 450, 392CrossRefADSGoogle Scholar
  8. Spitzer, L. Jr. (1962): Physics of Fully Ionized Gases, Interscience Publishers John WileyGoogle Scholar
  9. Stauffer, J. R., Cailault, J.-P., Gagné, M., Prosser, C. F., Hartmann, L. W. (1994): ApJS 91, 625.CrossRefADSGoogle Scholar
  10. Walter, F. M., Bowyer, S. (1981): ApJ 245, 671.CrossRefADSGoogle Scholar
  11. Weber, E. J., Davis, L. Jr. (1967): ApJ 148, 217CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Jürgen H. M. M. Schmitt
    • 1
  1. 1.Max-Planck-Institut für Extraterrestrische PhysikGarchingGermany

Personalised recommendations