Skip to main content

Introduction to path integrals, matrix models and strings

  • Conference paper
  • First Online:
Field Theory, Topology and Condensed Matter Physics

Part of the book series: Lecture Notes in Physics ((LNP,volume 456))

  • 472 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A general reference for aspects of path integral quantization is: Faddeev, L.D.: The Feynman Integral for Singular Lagrangians, Theo. Math. Phys. Vol.No.1,3 (1969)

    Google Scholar 

  2. Treatment of ordering associated with changes of variables in path integral is given in: Gervais, J.-L., Jevicki, A: Nucl.Phys. B110 (1976) 93

    Article  ADS  MathSciNet  Google Scholar 

  3. Path integral for spin is considered in: Jevicki, A., Papanicolaou N.: Ann.Phys. 120 (1979) 107 and in geometric terms for example, by Polyakov, A: Mod. Phys. Lett. A3 No. 3 (1988) 325

    Article  ADS  Google Scholar 

  4. Path integral quantization of the SU(2) top is due originally to: Schulman, L.: Phys. Rev. 176 (1968) 1558

    Article  ADS  MathSciNet  Google Scholar 

  5. The basic reference on String Theory is: Green, M., Schwarz, J., Witten, E.: Superstring Theory, (1987) Cambridge University Press

    Google Scholar 

  6. The spectrum of 2-Dimensional string theory can be found in: Polyakov, A.M.: Mod. Phys. Lett. A6 (1991) 635; Wakimoto, M., Yamada, H.: Hiroshima Math. J. 16, (1986) 427

    ADS  MathSciNet  Google Scholar 

  7. Knizhik, V.G., Polyakov, A.M., Zamolodchikov, A.B.: Mod. Phys. Lett. A3 (1988) 819

    ADS  Google Scholar 

  8. David, F.: Mod. Phys. Lett. A3 (1988) 1651; Distler, J., Kawai, H.: Nucl. Phys. B321 (1988) 509

    ADS  Google Scholar 

  9. For a review of the lattice approach see: Migdal, A.A., Kazakov, V.: Nucl. Phys. B311 (1988) 171

    ADS  MathSciNet  Google Scholar 

  10. For Yang-Mills in loop space see: Migdal, A.A.: Phys. Rep. 102 (1983); Sakita, B.: Phys. Rev. D21 (1980) 1067

    Google Scholar 

  11. The formulation of Yang-Mills on a circle (plaquet) was described in: Jevicki, A., Sakita, B.: Phys. Rev. D22 (1980) 467

    ADS  Google Scholar 

  12. The Schurr polynomial (character) eigenstates and the conformal field theory description is given in: Jevicki, A.: Nucl. Phys. B376 (1992) 75

    Article  ADS  MathSciNet  Google Scholar 

  13. For recent application and latest developments on the 1/N expansion of 2d Yang-Mills theory see: Douglas, M.: Conformal field Techniques in Large N Yang-Mills Theory, RU-93-57 preprint, to appear in the Cargese Workshop on Strings and Topological Field Theory; Gross, D., Taylor, W.: Nucl. Phys. B403 (1983) 395

    Google Scholar 

  14. The double scaling limit was introduced by: Brézin, E., Kazakov, V.: Phys. Lett. B236 (1990) 914; Gross, D., Migdal, A.: Phys. Rev. Lett. 64 (1990) 127; Douglas, M., Shenker, S.: Nucl.Phys. B335 (1991) 589

    Google Scholar 

  15. For an earlier review see: Klebanov, I.R.: “String theory in two dimensions”, in “String Theory and Quantum Gravity”, Proceedings of the Trieste Spring School 1991, eds. J. Harvey et al, (World Scientific, Singapore, 1992)

    Google Scholar 

  16. The field theoretic approach to 2d string theory that we described is given in: Das, S.R., Jevicki, A.: Mod. Phys. Lett. A5 (1990) 1639

    ADS  MathSciNet  Google Scholar 

  17. For perturbative calculations see: Demeterfi, K., Jevicki, A., Rodrigues, J.P.: Nucl. Phys. B362 (1991) 173; Nucl. Phys. B365 (1991) 449

    Article  ADS  MathSciNet  Google Scholar 

  18. The classical solution of collective field theory is given by: Polchinski, J.: Nucl. Phys. B362 (1991) 125

    Article  ADS  MathSciNet  Google Scholar 

  19. The ω symmetry was introduced in: Avan, J., Jevicki, A.: Phys. Lett. B266 (1991) 35; Phys. Lett. B272 (1991) 17

    ADS  MathSciNet  Google Scholar 

  20. and given a conformal field theory interpretation by: Witten, E.: Nucl. Phys. B373 (1992) 187

    Article  ADS  MathSciNet  Google Scholar 

  21. For the attempt to introduce the black hole see: Jevicki, A., Yoneya, T.: Nucl. Phys. B411 (1994) 64

    Article  ADS  MathSciNet  Google Scholar 

  22. The loop space approach to field theory of strings is formulated in Jevicki, A., Rodrigues, J.P.: Nucl. Phys. B421 (1994)

    Google Scholar 

  23. Schwinger-Dyson equations for matrix models are studied in: David, F.: Mod. Phys. Lett. A5 (1990) 1019; Fukuma, M., Kawai, H., Nakayama, R.: Intern. Journ. Mod. Phys. A6 (1991) 1385; Dijkgraaf, R., Verlinde, E., Verlinde, H.: Nucl. Phys B348 (1991) 435.

    ADS  Google Scholar 

  24. For an independent attempt of constructing a field theory of noncritical strings see: Ishibashi, N., Kawai, H.: KEK Preprint KEK-Th 364 (July 1993)

    Google Scholar 

  25. The stochastic approach to solving loop equations is originally used in: Rodrigues, J.P.: Nucl. Phys B260 (1985) 350

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Hendrik B. Geyer

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag

About this paper

Cite this paper

Jevicki, A. (1995). Introduction to path integrals, matrix models and strings. In: Geyer, H.B. (eds) Field Theory, Topology and Condensed Matter Physics. Lecture Notes in Physics, vol 456. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0113368

Download citation

  • DOI: https://doi.org/10.1007/BFb0113368

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60138-8

  • Online ISBN: 978-3-540-49455-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics