Advertisement

Morse index and sufficient optimality conditions for bang-bang pontryagin extremals

  • Andrej V. Sarychev
III Optimal Control III.1 Control Problems
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 180)

Keywords

Switching Point Morse Index Pontryagin Maximum Principle Maslov Index Sufficient Optimality Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Agrachev A.A., Quadratic Mappings in Geometric Control Theory, in: Problemy Geometrii, v. 20, Itogi nauki i tekhn.. VINITI, Moscow, Akad. Nauk SSSR (1988) 111–205.Google Scholar
  2. [2]
    Agrachev A.A., Gamkrelidze R.V., Sarychev A.V., Local Invariants of Smooth Control Systems, Acta Applicandae Mathematicae, 14 (1989) 191–237.zbMATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    Agrachev A.A., Gamkrelidze R.V., Symplectic Geometry for Optimal Control, in: H.J. Sussmann ed., Nonlinear Controllability and Optimal Control (Pure and Applied Mathem., v.133),Marcel Dekker Inc.,N.Y. (1990) 263–277.Google Scholar
  4. [4]
    Bressan A., A High-order Test for Optimality of Bang-Bang Controls, SIAM J.Contr.Optim,23 (1985) 38–48.zbMATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    Pontryagin L.S., Boltyanskii V.G.,Gamkrelidze R.V.,Mishchenko E.F., The Mathematical Theory of Optimal Processes, Pergamon Press (1964).Google Scholar
  6. [6]
    Sarychev A.V., Integral Representation of Trajectories for Control System with Generalized Right-Hand Side.-Differential Equations, 24 (1988) 1021–1031.zbMATHMathSciNetGoogle Scholar
  7. [7]
    Sarychev A.V., Morse Index of Pontryagin Extremals and Sufficient Conditions for Optimal Control Problems (in preparation).Google Scholar

Copyright information

© International Federation for Information Processing 1992

Authors and Affiliations

  • Andrej V. Sarychev
    • 1
    • 2
  1. 1.Inst. for Control SciencesUSSR Acad.Sci.MoscowUSSR
  2. 2.Mathematical InstituteUniversity of WürzburgAm Hubland, WürzburgGermany

Personalised recommendations