Shape optimization of contact problems using mixed variational formulation

  • A. Myśliński
III Optimal Control III.1 Control Problems
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 180)


Contact Problem Contact Boundary Material Derivative Ellipticity Condition Shape Optimization Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Benedict R.L., Sokolowski J., Zolesio J.P. (1984) Shape optimization for contact problems. In: System Modelling and Optimization, P. Thoft-Christensen ed., Lecture Notes in Control and Information Sciences,Vol 59,Springer Verlag, Berlin, pp. 790–799.CrossRefGoogle Scholar
  2. [2]
    Ciarlet Ph.(1978) The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam.zbMATHGoogle Scholar
  3. [3]
    Duvaut G., Lions J.L.(1972) Les inequations en mecanique et en physique, Dunod, Paris.zbMATHGoogle Scholar
  4. [4]
    Findeisen W., Szymanowski J., Wierzbicki A.(1977) Computational methods of optimization(in Polish), Polish Scientific Publisher, Warsaw.Google Scholar
  5. [5]
    Glowinski R., Fortin M.(1983) Augmented Lagrangian Methods: Application to the numerical solution of boundary value problems, North-Holland, Amsterdam.Google Scholar
  6. [6]
    Haslinger J., Neittaanmaki P.(1988) Finite Element Approximation for Optimal Shape Design. Theory and Applications, J.Wiley and Sons.Google Scholar
  7. [7]
    Haug E.J., Choi K.K., Komkov V.(1986) Design Sensitivity Analysis of Structural Systems, Academic Press.Google Scholar
  8. [8]
    LeTallec P., Lofti A.(1988) Decomposition metods for adherence problems in finite elasticity, Computer Methods in Applied Mechanics and Engineering 68: 67–82.CrossRefMathSciNetGoogle Scholar
  9. [9]
    Myslinski A.(1990) Shape Optimization of Contact Problems, Control and Cybernetics 19: 221–231.MathSciNetGoogle Scholar
  10. [10]
    Myslinski A.(1991) Mixed variational approach for shape optimization of contact problem with prescribed friction, In: Numerical Methods for Free Boundary Problems, P. Neittaanmaki ed., International Series of Numerical Mathematics, Vol 99, Birkhäuser, Basel, pp. 285–295.Google Scholar
  11. [11]
    Neittaanmaki P., Sokolowski J., Zolesio J.P.(1988) Optimization of the domain in elliptic variational inequalities Applied Mathematics and Optimization 18: 85–98.CrossRefMathSciNetGoogle Scholar
  12. [12]
    Rodrigues H.(1988) Shape optimal design of elastic bodies using a mixed variational formulation, Computer Methods in Applied Mechanics and Engineering 69: 29–44.zbMATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    Sokolowski J., Zolesio J.P.(1988) Shape sensitivity analysis of contact problem with prescribed friction, Nonlinear Analysis, Theory, Methods and Applications 12: 1399–1411.zbMATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    Zolesio J.P.(1981) The material derivative (or speed) method for shape optimization, In: Optimization of distributed parameter systems, E.J. Haug and J. Cea eds, NATO Advanced Study Institut Series, Serie E, Vol 49, Sijthoff and Noordhoff, Alphen aan den Rijn, Amsterdam, pp. 1089–1151.Google Scholar

Copyright information

© International Federation for Information Processing 1992

Authors and Affiliations

  • A. Myśliński
    • 1
  1. 1.System Research InstituteWarsawPoland

Personalised recommendations