On dynamical reconstructuon in nonlinear parabolic systems

  • V. I. Maksimov
III Optimal Control III.1 Control Problems
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 180)


Variational Inequality Boundary Control Convex Banach Space Unknown Input Distribute Parameter System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Krasovski, N.N. Controlling of dynamical system, Nauka, Moskow, 1985 (in Russian).Google Scholar
  2. 2.
    Kryazhimski, A.V., and Osipov, Yu. S., On modelling of control in a dynamical system, Izv. Akad.Nauk.USSR, Tech. Cybernet, Vol.2, pp.51–60, 1983 (in Russian).Google Scholar
  3. 3.
    Osipov, Yu. S., and Kryazhimski, A.V., On dynamical solution of operator equations, Dokl. Akad. Nauk SSSR, Vol.269, No.3, pp. 552–556, 1983 (in Russian).MathSciNetGoogle Scholar
  4. 4.
    Osipov, Yu.S., Inverse problems of dynamics for systems described by parabolic inequality, IIASA, Austria: WP-89-101, 11 pp., 1989.Google Scholar
  5. 5.
    Osipov, Yu.S., Kryazhimski, A.V., and Maksimov, V.I., Dynamic regularization problems for distributed parameter systems, Inst. Math. Mech. Ural. Sci. Cent. Acad. Sci. USSR, Preprint. 1991. 104 pp. (in Russian).Google Scholar
  6. 6.
    Maksimov, V.I., On dynamical modelling of unknown disturbances in parabolic inequalities, Prikl. Mat. Mekh., Vol.52, No.5, pp.743–750, 1988 (in Russian).MathSciNetGoogle Scholar
  7. 7.
    Maksimov, V.I., On stable solutions of inverse problems for nonlinear distributed systems,I, Differential Equat., Vol. 26, No.12, pp.2059–2067, 1990 (in Russian).zbMATHMathSciNetGoogle Scholar
  8. 8.
    Korbiz, Y.S., Maksimov, V.I., and Osipov, Yu.S., Dynamic control modelling in some parabolic systems, Prikl. Mat. Mekh., Vol.54, No.3, pp.355–360, 1990 (in Russian)Google Scholar
  9. 9.
    Barbu, V., Optimal control of variational inequalities, London, Pitman, 1984.zbMATHGoogle Scholar
  10. 10.
    Brezis, H., Operateurs maximaux monotones et semigroupes de contractions dans les espaces de Hilbert, Amsterdam-London-New York, 1973.Google Scholar
  11. 11.
    Tikhonov, A.N., and Arsenin, V.Ya., Solution of ill-posed problems, Wiley, N.Y., 1977.Google Scholar
  12. 12.
    Hoffmann, K.H., and Sprekels, J., On the identification of heat conductivity and latent heat in a one-phase Stefan problem, Control and Cybernet., Vol.14, No.1–3, 1985, pp. 37–51.MathSciNetGoogle Scholar
  13. 13.
    Roubicek, T., Optimal control of a Stefan problem with state-space constraints, Num. Mathem., Vol.50, No.6, pp.723–744.Google Scholar
  14. 14.
    Pawlow I., Analysis and control of evolution multi-phase problems with free boundaries, Prace Habilitacyjne, Wroclaw, 1987.Google Scholar

Copyright information

© International Federation for Information Processing 1992

Authors and Affiliations

  • V. I. Maksimov
    • 1
  1. 1.Institute of Mathematics and MechanicsSverdlovskU.S.S.R.

Personalised recommendations