Advertisement

Numerical implementation of nonlinear multicommodity network flows with linear side constraints through price-directive decomposition

  • Narcís Nabona
  • Josep M. Verdejo
II Mathematical Programming II.4 Nonlinear Programming
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 180)

Keywords

Side Constraint Network Flow Problem Active Vertex Subproblem Solution Rooted Span Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Ali, A., R.V. Helgason, J.L. Kennington & H. Lall. 1981. Computational comparison among three multicommodity network flow algorithms. Operations Research, v. 28, pp. 995–1000Google Scholar
  2. [2]
    Bradley G.H., G.G. Brown & G. Graves. 1977. Design and implementation of large scale primal transshipment algorithms. Management Science, v. 24, pp. 1–34zbMATHGoogle Scholar
  3. [3]
    Chvátal, V., 1983. Linear Programming, W.H. Freeman & Co., New York, USAzbMATHGoogle Scholar
  4. [4]
    Dantzig, G.B. & R.M. Van Slyke. 1967. Generalized upper bounding techniques, Journal of Computer and System Sciences, v. 1, pp. 213–226zbMATHMathSciNetGoogle Scholar
  5. [5]
    Dantzig, G.B. & P. Wolfe. 1960. Decomposition principles for linear programming, Operations Research, v. 8, pp. 101–111zbMATHCrossRefGoogle Scholar
  6. [6]
    Gill, P.E., Murray, W. & Wright, M.H.. 1981. Practial Optimization, Academic Press, LondonGoogle Scholar
  7. [7]
    Grigoriadis, M.D.. 1986. An efficient implementation of the network simplex method. Mathematical Programming Study, v. 26, pp. 83–111zbMATHMathSciNetGoogle Scholar
  8. [8]
    Kennington, J.L. & R.V. Helgason. 1980. Algorithms for Network Programming. John Wiley & Sons, New York, USAzbMATHGoogle Scholar
  9. [9]
    Murtagh, B.A. & M.A. Saunders. 1978. Large-scale linearly constrained optimization. Mathematical Programming, v. 14, pp. 41–72zbMATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    Burtagh, B.A. & M.A. Saunders. 1983. MINOS 5.0 User’s Guide. Dept. of Operations Research, Stanford University CA 94305, USAGoogle Scholar
  11. [11]
    Nabona, N. 1988. Implementació i extensions dels fluxos multiarticle en xarxes, per descomposición dictada per preus. Research Report 88/26, Fac. d’Informàtica, Univ. Politècnica de Catalunya, 08026 BarcelonaGoogle Scholar
  12. [12]
    Nabona, N. 1991. Multicommodity network flow model for long-term hydrogeneration optimization. Submitted to IEEE Trans. on Power SystemsGoogle Scholar

Copyright information

© International Federation for Information Processing 1992

Authors and Affiliations

  • Narcís Nabona
    • 1
  • Josep M. Verdejo
    • 1
  1. 1.Statistics and Operations Research Dept.Universitat Politècnica de CatalunyaBarcelona

Personalised recommendations