Advertisement

On a class of generalized gradient methods for solving locally lipschitz feasibility problems

  • Dan Butnariu
  • Abraham Mehrez
II Mathematical Programming II.4 Nonlinear Programming
  • 103 Downloads
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 180)

Abstract

In this paper we study a class of iterative algorithms for solving locally Lipschitz feasibility problems, that is finite systems of inequalities f i (x)≤0, (iI), where each f i is a locally Lipschitz functional on ℝn. We show that, under some conditions, the algorithms studied in this note converge to solutions of the given feasibility problem, provided that the feasibility problem is consistent.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. Agmon, The relaxation method for linear inequalities, Canadian Journal of Mathematics, 6, (1954), 382–392.zbMATHMathSciNetGoogle Scholar
  2. [2]
    R. Aharoni, A. Berman and Y. Censor, An interior point algorithm for the convex feasibility problem, Advances in Applied Mathematics, 4, (1983), 479–489.zbMATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    R. Aharoni and Y. Censor, Block-iterative projection methods for parallel computation of solution to convex feasibility problems, Linear Algebra And Its Applications, 120, (1988), 165–175.CrossRefMathSciNetGoogle Scholar
  4. [4]
    J.-P. Aubin and A. Cellina, Differential Inclusions, Springer Verlag, Berlin, Heidelberg, New York, Tokyo, (1984).zbMATHGoogle Scholar
  5. [5]
    A. Auslender, Optimization — Méthodes Numériques, Masson, Paris, New York, Barcelona, Milan, (1976).Google Scholar
  6. [6]
    M. Avriel, Methods for solving signomial and reverse convex programming problems, in: M. Avriel M. J. Rijkaert and D. J. Wilde (Eds.), "Optimization and Design", pp. 307–320, Prentice Hall, Englewood Cliffs, New Jersey, 1973Google Scholar
  7. [7]
    D. Butnariu and Y. Censor, On the behavior of a block-iterative projection method for Solving convex feasibility problems, International Journal of Computer Mathematics, 34, (1990), 79–94.CrossRefzbMATHGoogle Scholar
  8. [8]
    A. Cauchy, Méthode générale pour la résolution des systèmes d’équations simultanées, Comptes Rendues Hebdomadaires de l’Academie des Sciences, Paris, XXV, No. 16, (1847), 536–538.Google Scholar
  9. [9]
    Y. Censor, Row-action methods for huge and sparse systems and their applications, SIAM Review, 23, (1981), 444–466.zbMATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    Y. Censor and A. Lent, Cyclic subgradient projections, Mathematical Programming, 24, (1982), 233–235.zbMATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    Y. Censor, Parallel applications of block iterative methods in medical imaging and radiation therapy, Mathematical Programming, 42, (1988), 307–325.zbMATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    F. H. Clarke, Optimization and Nonsmooth Analysis, John Wiley and Sons, New York, Chichester, Brisbane, Toronto, Singapore, (1983).zbMATHGoogle Scholar
  13. [13]
    A. R. De Pierro and A. N. Iusem, A Simultaneous projection method for linear inequalities, Linear Algebra And Its Applications, 64, (1985), 243–253.zbMATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    A. R. de Pierro and A. N. Iusem, A parallel projection method of finding common points of a family of convex sets, Pesquisa Operacional, 5, (1985), 1–20.Google Scholar
  15. [15]
    F. Deutch, Applications of von Neumann’s alternating projection algorithm, in: Methods of Operation Research, (P. Kendrov, ed.), Sofia, (1983), pp. 44–51.Google Scholar
  16. [16]
    F. Deutch, Rate of convergence of the method of alternating projections, in: Parametric Optimization And Approximations, (P. Brosowski and F. Deutch, eds.), Birkhauser, Bassel, (1985), pp. 96–107.Google Scholar
  17. [17]
    I. I. Eremin, On systems of inequalities with convex functions in the left side, American Mathematical Society Translations, 2(88), (1970), 67–83.Google Scholar
  18. [18]
    S. D. Flåm, Solving non-cooperative games by continuous subgradient projection methods, Working Paper No. 1489, Department of Economics, University of Bergen, Norway, (1989).Google Scholar
  19. [19]
    S. D. Flåm, Approaching core solutions by mean of continuous bargaining, Working Paper No. 0690, Department of Economics, University of Bergen, Norway, (1990).Google Scholar
  20. [20]
    S. D. Flåm and J. Zowe, Relaxed outer projections, weighted averages and convex feasibility, BIT, 30, (1990), 289–300.zbMATHCrossRefMathSciNetGoogle Scholar
  21. [21]
    J. J.-B. Fourier, Solution d’une question particulière du calcul des inègalitées, Histoire de l’Academie des Sciences, Paris, (1824), 48–49.Google Scholar
  22. [22]
    J. L. Goffin, On convergence rates of subgradient optimization methods, Mathematical Programming, 13, (1977), 329–347.zbMATHCrossRefMathSciNetGoogle Scholar
  23. [23]
    J. L. Goffin, On the non-polynomiality of the relaxation method of systems of linear inequalities, Mathematical Programming, 22, (1982), 93–103.zbMATHCrossRefMathSciNetGoogle Scholar
  24. [24]
    A. A. Goldstein, Optimization of Lipschitz continuous functions, Mathematical Programming, 13, (1977), 14–22.zbMATHCrossRefMathSciNetGoogle Scholar
  25. [25]
    C. G. Gubin, B. T. Polyak and E. V. Raik, The method of projection for finding the common point of convex sets, USSR Computational Mathematics and Mathematical Physics, 7, (1966), 1–24.CrossRefGoogle Scholar
  26. [26]
    I. Halperin, The product of projection operators, Acta Sci. Math., 23, (1962), 94–99.Google Scholar
  27. [27]
    P. Hansen, D. Peters, D. Richards and J.-F. Thissa, The minisum and the minimax location problems revisited, Operation Research, 33, (1985), 1251–1265.zbMATHCrossRefGoogle Scholar
  28. [28]
    R. J. Hillestad, Optimization problems subject to a budget constraint with economics of scale, Operation Research, 23, (1975), 1091–1098.zbMATHMathSciNetGoogle Scholar
  29. [29]
    A. N. Iusem and A. R. De Pierro, Convergence results for an accelerated Cimmino algorithm, Numerische Mathematik, 49, (1986), 347–368.CrossRefGoogle Scholar
  30. [30]
    S. Kayalar and H. Wienert, Error bounds for the method of alternating projections, Mathematics of Control, Signals and Systems, 1, (1988), 43–59.zbMATHCrossRefMathSciNetGoogle Scholar
  31. [31]
    L. S. Lasdon and J. Plummer, Optimal design of efficient acoustic antenna arrays, Mathematical Programming, 39, (1987), 131–155.zbMATHCrossRefGoogle Scholar
  32. [32]
    T. S. Motzkin and I. J. Scheönberg, The relaxation method for linear inequalities, Canadian Journal of Mathematics, 6, (1954), 393–404.zbMATHGoogle Scholar
  33. [33]
    H. Nakano, Spectral Theory in Hilbert Space, Japanese Society For Promotion Of Science, Tokyo, 1953.zbMATHGoogle Scholar
  34. [34]
    J. von Neumann, On rings of operators. Reduction theory, Annals of Mathematics, 50, (1949), 401–485.CrossRefMathSciNetGoogle Scholar
  35. [35]
    B. T. Polyak, Minimization of nonsmooth functionals, USSR Computational Mathematics and Mathematical Physics, 9, (1969), 509–521.Google Scholar
  36. [36]
    B. T. Polyak, A general method for solving extremum problems, Doklady Akademia Nauk SSSR, 174, (1967), 33–36.Google Scholar
  37. [37]
    A. W. Roberts and D. E. Varberg, Another proof that convex functions are locally Lipschitz, American Mathematical Monthly, 81, (1974), 1014–1016.zbMATHCrossRefMathSciNetGoogle Scholar
  38. [38]
    R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, New Jersey, (1970).zbMATHGoogle Scholar
  39. [39]
    N. Z. Shor, An application of the method of gradient descent to the solution of the network transportation problem, in: Materialy Naucnovo Seminara po Theoret i Priklad. Voprosam Kibernet. i Issted. Operacii, Nucnui po Kibernet. Acad. Nauk Ukrain. SSSR, vyp. 1, Kiev, (1962), pp. 9–17.Google Scholar
  40. [40]
    N. Z. Shor, Minimization Methods for Nondifferentiable Functions, Springer Verlag, Berlin, Heidelberg, New York, Tokyo, (1985).Google Scholar
  41. [41]
    S. Wright, An inexact algorithm for composite nondiffrentiable optimization, Mathematical Programming, 44, (1989), 221–234.zbMATHCrossRefMathSciNetGoogle Scholar
  42. [42]
    D. Youla, Generalized image restoration by the method of alternating orthogonal projections, IEEE Transactions on Circuits and Systems, CAS-25, No. 9, (1978), 694–702.CrossRefMathSciNetGoogle Scholar

Copyright information

© International Federation for Information Processing 1992

Authors and Affiliations

  • Dan Butnariu
    • 1
  • Abraham Mehrez
    • 2
  1. 1.Department of Mathematics and Computer ScienceHaifa UniversityHaifaIsrael
  2. 2.The Faculty of Engineering SciencesBen-Gurion University Of The NegevBeer-ShevaIsrael

Personalised recommendations