Duality results for convex vector optimization problems with linear restrictions

  • Chr. Tammer
  • K. Tammer
I Optimality And Duality
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 180)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Durier, R.: On pareto optima, the Fermat-Weber problem and polyhedral gauges. Math Progr. 47:65–79 (1990).zbMATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    Elster, R., C. Gerth(Tammer), A. Göpfert: Duality in geometric vector optimization. Optimization 20/4: 457–476 (1989).CrossRefGoogle Scholar
  3. [3]
    Jahn, J.: Duality in vector optimization. Math. Progr. 25/3: 343–353 (1983).CrossRefMathSciNetGoogle Scholar
  4. [4]
    Phelps, R.R.: Convex Functions, Monotone Operators and Differentiability. Springer-Verlag Berlin-Heidelberg-New York (1989).zbMATHGoogle Scholar
  5. [5]
    Tammer, Ch.; K. Tammer: Generalization and sharpening of some duality relations for a class of vector optimization problems, ZOR 35: 249–265 (1991).zbMATHMathSciNetGoogle Scholar
  6. [6]
    Tichomirov, V.M.: Some questions of approximation theory (in russ.) Publishing house of the Moscow University, Moscow, (1976).Google Scholar
  7. [7]
    Wanka, G.: On duality in the vectorial control-approximation problem. To appear in ZOR (1991).Google Scholar
  8. [8]
    Wanka, G.: Duality in vectorial control approximation problems with inequality restrictions. To appear in Optimization (1991).Google Scholar

Copyright information

© International Federation for Information Processing 1992

Authors and Affiliations

  • Chr. Tammer
    • 1
  • K. Tammer
    • 2
  1. 1.Fachbereich Mathematik und InformatikTH MerseburgMerseburg
  2. 2.Fachbereich Mathematik und InformatikTH LeipzigLeipzig

Personalised recommendations