Advertisement

Packing circles in a square: A review and new results

  • R. Peikert
  • D. Würtz
  • M. Monagan
  • C. de Groot
I Optimality And Duality
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 180)

Keywords

Optimal Packing Circle Packing Error Circle Free Circle Spherical Code 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Schaer, The densest packing of nine circles in a square, Canad. Math. Bull. 8, pages 273–277, 1965.zbMATHMathSciNetGoogle Scholar
  2. [2]
    J. Schaer and A. Meir, On a geometric extremum problem, Canad. Math. Bull. 8, pages 21–27, 1965.zbMATHMathSciNetGoogle Scholar
  3. [3]
    M. Goldberg, The packing of equal circles in a square, Math. Magazine 43, pages 24–30, 1970.zbMATHCrossRefGoogle Scholar
  4. [4]
    J. Schaer, On the densest packing of ten equal circles in a square, Math. Magazine 44, pages 139–140, 1971zbMATHMathSciNetGoogle Scholar
  5. [5]
    B. Buchberger, A Theoretical Bais for the Reduction of Polynomials to Canonical Forms, ACM SIGSAM Bulletin 9, No. 4, November 1976.Google Scholar
  6. [6]
    K. Schlüter, Kreispackung in Quadraten, Elemente der Mathematik 34, pages 12–14, 1979.zbMATHGoogle Scholar
  7. [7]
    S. R. Czapor, K. O. Geddes, On Implementing Buchberger’s Algorithm for Grobner Bases, Proceedings of the 1986 Symposium on Symbolic and Algebraic Computation Symsac’86, Waterloo 1986.Google Scholar
  8. [8]
    R. Milano, Configurations optimales de disques dans un polygone régulier, Mémoire de Licence, Université Libre de Bruxelles, 1987.Google Scholar
  9. [9]
    IMSL, Math. Library, User’s Manual, 1987.Google Scholar
  10. [10]
    G. Valette, A better packing of ten circles in a square, Discrete Math. 76, pages 57–59, 1989.zbMATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    G. Valette, Zbl. Math. 672, pages 214, 1990.Google Scholar
  12. [12]
    B. Grünbaum, An improved packing of ten circles in a square, preprint, 1990.Google Scholar
  13. [13]
    M. Mollard and C. Payan, Some progress in the packing of equal circles in a square, Discrete Math. 84, pages 303–307, 1990.zbMATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    C. de Groot, R. Peikert and D. Würtz, The optimal packing of ten equal circles in a square, IPS Research Report, ETH Zürich No. 90-12, August 1990, Discrete Math. (to appear).Google Scholar
  15. [15]
    M. Grannell, An even better packing of ten equal circles in a square, preprint, 1990.Google Scholar
  16. [16]
    J. Petris and N. Hungerbühler, private communication.Google Scholar
  17. [17]
    J. Petris and N. Hungerbühler, manuscript, 1990.Google Scholar
  18. [18]
    B. W. Char, K. O. Geddes, G. H. Gonnet, M. B. Monagan and S. M. Watt, Maple Reference Manual, 5th edition, WATCOM Publications Ltd., Waterloo, Ontario, Canada.Google Scholar
  19. [19]
    C. de Groot, D. Würtz, M. Hanf, K.H. Hoffmann, R. Peikert and Th. Koller, Stochastic Optimization — Efficient Algorithms to Solve Complex Problems, this conference proceedings.Google Scholar

Copyright information

© International Federation for Information Processing 1992

Authors and Affiliations

  • R. Peikert
    • 1
  • D. Würtz
    • 1
  • M. Monagan
    • 2
  • C. de Groot
    • 1
  1. 1.Interdisziplinäres Projektzentrum für SupercomputingETH ZürichZürichSwitzerland
  2. 2.Departement Informatik, Wissenschaftliches RechnenETH ZürichZürichSwitzerland

Personalised recommendations