Advertisement

Model development and control objectives

Chapter
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 262)

Keywords

Mobile Robot Control Objective Reference Trajectory Nonholonomic System Regulation Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L.E. Aguilar M., P. Soueres, M. Courdesses, S. Fleury, “Robust Path-Following Control with Exponential Stability for Mobile Robots”, Proceedings of the IEEE International Conference on Robotics and Automation, pp. 3279–3284, 1998.Google Scholar
  2. [2]
    A. Bloch, M. Reyhanoglu, and N. McClamroch, “Control and Stabilization of Nonholonomic Dynamic Systems”, IEEE Transactions on Automatic Control, Vol. 37, No. 11, pp. 1746–1756, Nov. 1992.zbMATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    R. Brockett, “Asymptotic Stability and Feedback Stabilization”, Differential Geometric Control Theory, (R. Brockett, R. Millman, and H. Sussmann Eds.), Birkhauser, Boston, 1983.Google Scholar
  4. [4]
    C. Canudas de Wit, and O. Sordalen, “Exponential Stabilization of Mobile Robots with Nonholonomic Constraints”, IEEE Transactions on Automatic Control, Vol. 37, No. 11, pp. 1791–1797, Nov. 1992.zbMATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    C. Canudas de Wit, K. Khennouf, C. Samson and O.J. Sordalen, “Non-linear Control for Mobile Robots”, Recent Trends in Mobile Robots, ed. Y. Zheng, World Scientific: New Jersey, 1993.Google Scholar
  6. [6]
    J. Coron and J. Pomet, “A Remark on the Design of Time-Varying Stabilizing Feedback Laws for Controllable Systems Without Drift”, in Proceedings of the IFAC Symposium on Nonlinear Control Systems Design (NOLCOS), Bordeaux, France, pp. 413–417, June 1992.Google Scholar
  7. [7]
    C. A. Desoer and M. Vidyasagar, Feedback Systems: Input-Output Properties, New York: Academic Press, 1975.zbMATHGoogle Scholar
  8. [8]
    W.E. Dixon, Z. P. Jiang, and D. M. Dawson, “Global Exponential Setpoint Control of Wheeled Mobile Robots: A Lyapunov Approach”, Automatica, to appear in Vol. 36, No. 11, November 2000.Google Scholar
  9. [9]
    G. Escobar, R. Ortega, and M. Reyhanoglu, “Regulation and Tracking of the Nonholonomic Double Integrator: A Field-oriented Control Approach”, Automatica, Vol. 34, No. 1, pp. 125–131, 1998.zbMATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    R. Fierro and F. L. Lewis, “Control of a Nonholonomic Mobile Robot: Backstepping Kinematics into Dynamics”, Journal of Robotic Systems, Vol. 14, No. 3, pp. 149–163, 1997.zbMATHCrossRefGoogle Scholar
  11. [11]
    J. Godhavn and O. Egeland, “A Lyapunov Approach to Exponential Stabilization of Nonholonomic Systems in Power Form”, IEEE Trans. on Automatic Control, Vol. 42, No. 7, pp. 1028–1032, July 1997.zbMATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    Z. Jiang, “Iterative design of time-varying stabilizers for multi-input systems in chained form”, Systems and Control Letters, Vol. 28, pp. 255–262, 1996.zbMATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    Z. Jiang and H. Nijmeijer, “Tracking Control of Mobile Robots: A Case Study in Backstepping”, Automatica, Vol. 33, No. 7, pp. 1393–1399, 1997.zbMATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    Z. Jiang and H. Nijmeijer, “A Recursive Technique for Tracking Control of Nonholonomic Systems in the Chained Form”, IEEE Transactions on Automatic Control, Vol. 44, No. 2, pp. 265–279, Feb. 1999.zbMATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    Y. Kanayama, Y. Kimura, F. Miyazaki, and T. Noguchi, “A Stable Tracking Control Method for an Autonomous Mobile Robot”, Proceedings of the IEEE International Conference on Robotics and Automation, pp. 384–389, 1990.Google Scholar
  16. [16]
    F. Lewis, C. Abdallah, and D. Dawson, Control of Robot Manipulators, New York: MacMillan Publishing Co., 1993.Google Scholar
  17. [17]
    R. M'Closkey and R. Murray, “Exponential Stabilization of Driftless Nonlinear Control Systems Using Homogeneous Feedback”, IEEE Transactions on Automatic Control, Vol. 42, No. 5, pp. 614–628, May 1997.zbMATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    J. Pomet, “Explicit Design of Time-Varying Stabilizing Control Laws For A Class of Controllable Systems Without Drift”, Systems and Control Letters, Vol. 18, No. 2, pp. 147–158, 1992.zbMATHCrossRefMathSciNetGoogle Scholar
  19. [19]
    C. Samson, “Velocity and Torque Feedback Control of a Nonholonomic Cart”, Advanced Robot Control; Proceedings of the International Workshop in Adaptive and Nonlinear Control: Issues in Robotics, Vol. 162, C. Canudas de Wit, Ed., New York: Springer-Verlag, 1991.Google Scholar
  20. [20]
    C. Samson, “Control of Chained Systems Application to Path Following and Time-Varying Point-Stabilization of Mobile Robots”, IEEE Transactions on Automatic Control, Vol. 40, No. 1, pp. 64–77, January 1995.zbMATHCrossRefMathSciNetGoogle Scholar
  21. [21]
    A. Teel, R. Murray, and C. Walsh, “Nonholonomic Control Systems: From Steering to Stabilization with Sinusoids”, Int. Journal Control, Vol. 62, No. 4, pp. 849–870, 1995.zbMATHCrossRefMathSciNetGoogle Scholar
  22. [22]
    G. Walsh, D. Tilbury, S. Sastry, R. Murray, and J. P. Laumond, “Stabilization of Trajectories for Systems with Nonholonomic Constraints”, IEEE Transactions on Automatic Control, Vol. 39, No. 1, pp. 216–222, Jan. 1994.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2001

Personalised recommendations