Bose field theory as classical statistical mechanics. III. The classical ising approximation

  • Barry Simon
Part of the Lecture Notes in Physics book series (LNP, volume 25)


Partition Function Classical Statistical Mechanics Infinite Volume Range Order Parameter Correlation Inequality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ASANO, T. (1970): J. Phys. Soc. Jap. 29, 350.ADSMathSciNetCrossRefGoogle Scholar
  2. GRIFFITHS, R. (1970): J. Math. Phys. 10, 1559.CrossRefADSzbMATHGoogle Scholar
  3. GUERRA, F. (1972): Phys. Rev. Lett. 28, 1213.CrossRefADSGoogle Scholar
  4. GUERRA, F., ROSEN, L. SIMON, B. (1973): The P(φ)2 Euclidean Quantum Field Theory as Classical Statistical Mechanics, Ann. Math., to appearGoogle Scholar
  5. GUERRA, F., ROSEN, L., SIMON, B. (1974): Boundary Conditions for the P(φ)2 Euclidean Field Theory, in preparation.Google Scholar
  6. LEBOWITZ, J., PENROSE, O. (1968): Commun. Math. Phys. 11, 99.zbMATHCrossRefADSMathSciNetGoogle Scholar
  7. LEE, T.D., YANG, C.N. (1952): Phys. Rev. 87, 410.zbMATHCrossRefADSMathSciNetGoogle Scholar
  8. NEWMAN, C. (1973): Zeroes of the Partition Function for Generalized Ising Systems, N.Y.U. Preprint.Google Scholar
  9. OSTERWALDER, K., SCHRADER, R. (1973): Commun. Math Phys. 31, 83.zbMATHCrossRefADSMathSciNetGoogle Scholar
  10. RUELLE, D. (1969): Statistical Mechanics, Benjamin, New York.zbMATHGoogle Scholar
  11. SIMON, B. (1973a): Commun. Math. Phys. 31, 127.CrossRefADSzbMATHGoogle Scholar
  12. SIMON, B. (1973b): Correlation Inequalities and the Mass Gap in P(φ)2, II. Uniqueness of the Vacuum for a Class of Strongly Coupled Theories, Ann. Math., to appear.Google Scholar
  13. SIMON, B. (1974): The P(φ) 2 Euclidean Quantum Field Theory, Princeton Series in Physics, Princeton University Press.Google Scholar
  14. SIMON, B. GRIFFITHS, R. (1973): The (φ4)2 Field Theory as a Classical Ising Model, Commun. Math. Phys., to appear.Google Scholar
  15. WIGHTMAN, A.S. (1969): Phys. Today 22 53–58.CrossRefGoogle Scholar
  16. YANG, C.N., LEE, T.D. (1952): Phys Rev. 87 404.zbMATHCrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • Barry Simon
    • 1
  1. 1.Departments of Mathematics and PhysicsPrinceton UniversityUSA

Personalised recommendations