Bose field theory as classical statistical mechanics. I. The variational principle and the equilibrium equations

  • Francesco Guerra
Part of the Lecture Notes in Physics book series (LNP, volume 25)


Variational Principle Entropy Density Anharmonic Oscillator Classical Statistical Mechanic Infinite Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. BAUMEL, Princeton University Thesis, 1973.Google Scholar
  2. [2]
    W. CRUTCHFIELD, Princeton University Senior Thesis, 1973.Google Scholar
  3. [3]
    R.L. DOBRUSHIN, Gibbsian Random Fields for Lattice Systems with Pairwise Interactions, Funct. Anal. Applic. 2 (1968) 292.CrossRefzbMATHGoogle Scholar
  4. [4]
    R.L. DOBRUSHIN, The Problem of Uniqueness of a Gibbsian Random Field and the Problem of Phase Transitions, Funct. Anal. Applic. 2 (1968) 302.zbMATHCrossRefGoogle Scholar
  5. [5]
    R.L. DOBRUSHIN, Gibbsian Random Fields, The General Case, Funct. Anal. Applic. 3 (1969) 22.zbMATHCrossRefGoogle Scholar
  6. [6]
    R.L. DOBRUSHIN and R.A. MINLOS, Construction of a One Dimensional Quantum Field Via a Continuous Markov Field, Moscow Preprint, 1973.Google Scholar
  7. [7]
    I.I. GIKHMAN and A.V. SKOROKHOD, Introduction to the Theory of Random Processes, W.B. Saunders Co., Philadelphia, 1969.Google Scholar
  8. [8]
    J. GLIMM, These Proceedings.Google Scholar
  9. [9]
    J. GLIMM and A. JAFFE, The λ4)2Quantum Field Theory Without Cutoffs. III. The Physical Vacuum, Acta Math. 125 (1970) 203.CrossRefMathSciNetGoogle Scholar
  10. [10]
    J. GLIMM and A. JAFFE, Quantum Field Theory Models, in Statistical Mechanics and Quantum Field Theory, Les Houches 1970, C. DE WITT, R. STORA, Editors, Gordon and Branch, New York, 1971.Google Scholar
  11. [11]
    J. GLIMM and A. JAFFE, Boson Quantum Field Models, in Mathematics of Contemporary Physics, R. STREATER, Editor, Academic Press, New York, 1972.Google Scholar
  12. [12]
    J. GLIMM and A. JAFFE, Positivity of the ϕ 34 Hamiltonian, Fort. der Physik, 21 (1973) 327.CrossRefMathSciNetGoogle Scholar
  13. [13]
    J. GLIMM, A. JAFFE and T. SPENCER, The Wightman Axioms and Particle Structure in the P(ϕ) 2 Quantum Field Model, New York University Preprint, 1973.Google Scholar
  14. [14]
    R. GRIFFITHS, Rigorous Results and Theorems, in Phase Transitions and Critical Phenomena, vol. I, ed. C. Comb and M.S. Green, Academic Press, London and New York, 1972.Google Scholar
  15. [15]
    F. GUERRA, Uniqueness of the Vacuum Energy Density and Van Hove Phenomenon in the Infinite Volume Limit for Two-Dimensional Self-Coupled Bose Fields, Phys. Rev. Lett. 28 (1972) 1213.CrossRefADSGoogle Scholar
  16. [16]
    F. GUERRA, L. ROSEN and B. SIMON, Nelson’s Symmetry and the Infinite Volume Behavior of the Vacuum in P(ϕ) 2, Commun.math.Phys. 27 (1972) 10.CrossRefADSMathSciNetGoogle Scholar
  17. [17]
    F. GUERRA, L. ROSEN and B. SIMON, Statistical Mechanics Results in the P(ϕ) 2 Quantum Field Theory, Phys.Lett. 44B (1973) 102.ADSGoogle Scholar
  18. [18]
    F. GUERRA, L. ROSEN and B. SIMON, The P(ϕ) 2 Euclidean Quantum Field Theory as Classical Statistical Mechanics, Ann. Math., to appear.Google Scholar
  19. [19]
    F. GUERRA, L. ROSEN and B. SIMON, in preparation.Google Scholar
  20. [20]
    A. JAFFE, These Proceedings.Google Scholar
  21. [21]
    O. LANFORD and D. RUELLE, Observables at Infinity and States with Short Range Correlations in Statistical Mechanics, Commun.math.Phys. 13 (1969) 194.CrossRefADSMathSciNetGoogle Scholar
  22. [22]
    R.P. MOYA, Equilibrium States for the Infinite Free Bose Gas, University of London, Preprint, 1973.Google Scholar
  23. [23]
    T. NAKANO, Quantum Field Theory in Terms of Euclidean Parameters, Prog. Theor. Phys. 21 (1959) 241.zbMATHCrossRefADSMathSciNetGoogle Scholar
  24. [24]
    E. NELSON, Quantum Fields and Markoff Fields, in Proceedings of Summer Institute of Partial Differential Equations, Berkeley 1971, Amer. Math. Soc., Providence, 1973.Google Scholar
  25. [25]
    E. NELSON, Construction of Quantum Fields from Markoff Fields, J.Funct.Anal. 12 (1973) 97.zbMATHCrossRefGoogle Scholar
  26. [26]
    E. NELSON, The Free Markoff Field, J.Funct.Anal. 12 (1973) 211.zbMATHCrossRefGoogle Scholar
  27. [27]
    E. NELSON, These Proceedings.Google Scholar
  28. [28]
    E. NELSON, in preparation.Google Scholar
  29. [29]
    C. NEWMAN, The Construction of Stationary Two-Dimensional Markoff Fields with an Application to Quantum Field Theory, J.Funct.Anal., to appear.Google Scholar
  30. [30]
    M. REED, These Proceedings.Google Scholar
  31. [31]
    L. ROSEN, These Proceedings.Google Scholar
  32. [32]
    D. RUELLE, A Variational Formulation of Equilibrium Statistical Mechanics and the Gibbs Phase Rule, Commun.math.Phys. 5 (1967) 324.zbMATHCrossRefADSMathSciNetGoogle Scholar
  33. [33]
    D. RUELLE, Statistical Mechanics, Benjamin, New York, 1969.zbMATHGoogle Scholar
  34. [34]
    D. RUELLE, Superstable Interactions in Classical Statistical Mechanics, Commun.math.Phys. 18 (1970) 127.zbMATHCrossRefADSMathSciNetGoogle Scholar
  35. [35]
    J. SCHWINGER, On the Euclidean Structure of Relativistic Field Theory, Proc.Nat.Acad.Sci. 44 (1958) 956.zbMATHCrossRefADSMathSciNetGoogle Scholar
  36. [36]
    B. SIMON, Correlation Inequalities and the Mass Gap in P(ϕ) 2. I. Domination by the Two Point Function, Commun.math.Phys. 31 (1973) 127.CrossRefADSzbMATHGoogle Scholar
  37. [37]
    B. SIMON, Correlation Inequalities and the Mass Gap in P(ϕ) 2. II. Uniqueness of the Vacuum for a Class of Strongly Coupled Theories, Toulon University Preprint, 1973.Google Scholar
  38. [38]
    B. SIMON, These Proceedings.Google Scholar
  39. [39]
    B. SIMON and R. Griffiths, Griffiths-Hurst-Sherman Inequalities and a Lee-Yang Theorem for the 4)2 Field Theory, Phys. Rev. Lett. 30 (1973) 931.CrossRefADSGoogle Scholar
  40. [40]
    B. SIMON and R. GRIFFITHS, The 4)2 Field Theory as a Classical Ising Model, Commun.math.Phys., to appear.Google Scholar
  41. [41]
    B. SIMON and R. HOEGH-KROHN, Hypercontractive Semigroups and Two Dimensional Self-Coupled Bose Fields, J. Funct.Anal. 9 (1972) 121.zbMATHCrossRefMathSciNetGoogle Scholar
  42. [42]
    K. SYMANZIK, Euclidean Quantum Field Theory, in Local Quantum Theory, R. JOST, Editor, Academic Press, New York, 1969.Google Scholar
  43. [43]
    A.S. WIGHTMAN, Constructive Field Theory. Introduction to the Problems, Coral Gables Lectures, 1972.Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • Francesco Guerra
    • 1
  1. 1.Institute of PhysicsUniversity of SalernoSalernoItaly

Personalised recommendations