Skip to main content

Probability theory and euclidean field theory

  • Chapter
  • First Online:
Constructive Quantum Field Theory

Part of the book series: Lecture Notes in Physics ((LNP,volume 25))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. L. Dobrushin and R. A. Minlos, Construction of a one-dimensional quantum field via a continuous Markoff field, submitted to Functional Analysis and its Applications.

    Google Scholar 

  2. J. Ginibre, General formulation of Griffiths’ inequalities, Communications in Math. Phys. 16 (1970), 310–328.

    Article  ADS  MathSciNet  Google Scholar 

  3. J. Glimm, Boson fields with nonlinear self-interaction in two dimensions, Communications in Math. Phys. 8 (1968), 12–25.

    Article  MATH  ADS  Google Scholar 

  4. Robert B. Griffiths, Rigorous results for Ising ferromagnets of arbitrary spin, J. of Mathematical Physics 10 (1969), 1559–1565.

    Article  ADS  Google Scholar 

  5. Robert B. Griffiths, Phase transitions, in Statistical Mechanics and Quantum Field Theory (Les Houches 1970) ed. C. DeWitt and R. Stora, Gordon and Breach, New York (1971), 241–279.

    Google Scholar 

  6. Leonard Gross, Logarithmic Sobolev Inequalities, Cornell University preprint (1973).

    Google Scholar 

  7. F. Guerra, L. Rosen, and B. Simon, The P(Ï•)2 Euclidean quantum field theory as classical statistical mechanics, to appear in Annals of Mathematics.

    Google Scholar 

  8. P. R. Halmos, Normal dilations and extensions of operators, Summa Brasiliensis Math. 2 (1950), 125–134.

    MathSciNet  Google Scholar 

  9. Edward Nelson, The free Markoff field, J. Functional Anal. 12 (1973), 211–227.

    Article  MATH  Google Scholar 

  10. Edward Nelson, Construction of quantum fields from Markoff fields, J. Functional Anal. 12 (1973), 97–112.

    Article  MATH  Google Scholar 

  11. K. Osterwalder and R. Schrader, Axioms for Euclidean Green’s functions, Communications in Math. Phys. 31, 83 (1973).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. Shôichirô Sakai, C*-Algebras and W*-Algebras, Ergebnisse der Math. und ihrer Grenzgebiete, Band 60, Springer-Verlag, New York, 1971.

    Google Scholar 

  13. I. E. Segal, Tensor algebras over Hilbert spaces, Trans. Amer. Math. Soc. 81 (1956), 106–134.

    Article  MATH  MathSciNet  Google Scholar 

  14. Elias M. Stein and Guido Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, Princeton (1971).

    MATH  Google Scholar 

  15. K. Symanzik, Euclidean quantum field theory, Rend. Scuola Int. Fis. E. Fermi, XLV Corso.

    Google Scholar 

  16. G. Szegő, Orthogonal Polynomials, Amer. Math. Soc. Coll. Publ. XXIII, New York (1939).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

G. Velo A. Wightman

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Springer-Verlag

About this chapter

Cite this chapter

Nelson, E. (1973). Probability theory and euclidean field theory. In: Velo, G., Wightman, A. (eds) Constructive Quantum Field Theory. Lecture Notes in Physics, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0113084

Download citation

  • DOI: https://doi.org/10.1007/BFb0113084

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-06608-8

  • Online ISBN: 978-3-540-37912-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics