Advertisement

Euclidean Green’s Functions and Wightman Distributions

  • Konrad Osterwalder
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 25)

Keywords

Distribution Property Cluster Property Wightman Function Reconstruction Theorem Lorentz Rotation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BEG]
    BROS, J., EPSTEIN, H., GLASER, V., Commun. Math. Phys. 6, 77 (1967).zbMATHCrossRefADSMathSciNetGoogle Scholar
  2. [Dy 1]
    DYSON, F J., Phys. Rev. 75, 1736 (1949).zbMATHCrossRefADSMathSciNetGoogle Scholar
  3. [Ep 1]
    EPSTEIN, H., in: Axiomatic Field Theory, Brandeis Lectures 1965, Volume I; ed. M. Chretien and S. Deser, Gordon and Breach, New York, 1966.Google Scholar
  4. [Fe 1]
    FEYNMAN, R. P., Rev. Mod. Phys. 20, 367 (1948).CrossRefADSMathSciNetGoogle Scholar
  5. [Fe 2]
    FEYNMAN, R. P., Phys. Rev. 76, 749 (1949).zbMATHCrossRefADSMathSciNetGoogle Scholar
  6. [Fr 1]
    FRADKIN, E. S., Dokl. Akad. Nauk. SSSR, 125, 311 (1959); engl. transl. in Sov. Phys. Dokl. 4, 347 (1959).MathSciNetGoogle Scholar
  7. [Gl 1]
    GLASER, V., On the equivalence of the Euclidean and Wightman Formulation of Field Theory, CERN Preprint.Google Scholar
  8. [Gl 2]
    GLASER, V., Problems of Theoretical Physics, “Nauka”, Moscow, 1969, p. 69.Google Scholar
  9. [GJS]
    GLIMM, J., JAFFE, A., SPENCER, T., The Wightman Axioms and particle Structure in the P (ϕ) 2 Quantum Field Model. Preprint.Google Scholar
  10. [Gu 1]
    GUERRA, F., Phys. Rev. Lett. 28, 1213 (1972).CrossRefADSGoogle Scholar
  11. [Jo 1]
    JOST, R., The General Theory of Quantized Fields, Amer. Math. Soc. Publ., Providence, R.I., 1965.zbMATHGoogle Scholar
  12. [Li 1]
    LIONS, J. L., J. Analyse Math., 2, 369 (1952).CrossRefGoogle Scholar
  13. [Na 1]
    NAKANO, T., Progr. Theor. Phys. 21, 241 (1959).zbMATHCrossRefADSMathSciNetGoogle Scholar
  14. [Ne 1]
    NELSON, E., Quantum Fields and Markoff Fields, Amer. Math. Soc. Summer Institute on PDE, held at Berkeley, 1971.Google Scholar
  15. [Ne 2]
    NELSON, E., J. Funct. Anal. 12, 97 (1973).zbMATHCrossRefGoogle Scholar
  16. [Ne 3]
    NELSON, E., J. Funct. Anal. 12, 211 (1973).zbMATHCrossRefGoogle Scholar
  17. [Ne 4]
    NELSON, E., Erice Lecture Notes (1973).Google Scholar
  18. [OS 1]
    OSTERWALDER, K., and SCHRADER, R., Phys. Rev. Lett. 29, 1423, (1972).CrossRefADSGoogle Scholar
  19. [OS 2]
    OSTERWALDER, K., and SCHRADER, R., Euclidean Fermi Fields and a Feynman-Kac Formula for Boson-Fermion Models, to appear in Helv. Phys. Acta.Google Scholar
  20. [OS 3]
    OSTERWALDER, K., and SCHRADER, R., Commun. Math. Phys. 31, 83 (1973).zbMATHCrossRefADSMathSciNetGoogle Scholar
  21. [OS 4]
    OSTERWALDER, K., and SCHRADER, R., Axioms for Euclidean Green’s Functions II, in preparation.Google Scholar
  22. [Oz 1]
    OZKAYNAK, H., Euclidean Fields for Arbitrary Spin, to appear.Google Scholar
  23. [Sc 1]
    SCHWINGER, J., Proc. Natl. Acad. Sci. U.S. 44, 956 (1958).zbMATHCrossRefADSMathSciNetGoogle Scholar
  24. [Sc 2]
    SCHWINGER, J., Phys. Rev. 115, 721 (1959).zbMATHCrossRefADSMathSciNetGoogle Scholar
  25. [Sz 1]
    SCHWARTZ, L., Medd. Lunds. Univ. Math. Semin. (Supplementband), 196 (1952).Google Scholar
  26. [Si 1]
    SIMON, B., Euclidean Formulation of (Relativistic) Quantum Field Theory, Zürich Lectures 1973, to appear in: Princeton Series in Physics.Google Scholar
  27. [SW 1]
    STREATER, R. F., WIGHTMAN, A. S., PCT, Spin and Statistics and All That, New York: Benjamin, 1964.zbMATHGoogle Scholar
  28. [Sy 1]
    SYMANZIK, K., J. Math. Phys. 7, 510 (1966).CrossRefADSMathSciNetGoogle Scholar
  29. [Sy 2]
    SYMANZIK, K., Euclidean Quantum Field Theory, in: Proc. of the International School of Physics “ENRICO FERMI”, Varenna Course XLV, ed. R. Jost, New York: Academic Press, 1969.Google Scholar
  30. [Vl 1]
    VLADIMIROV, V. S., Methods of the Theory of Functions of Several Complex Variables, Cambridge and London: MIT Press 1966.Google Scholar
  31. [Wi 1]
    WICK, G. C., Phys. Rev. 96, 1124 (1954).zbMATHCrossRefADSMathSciNetGoogle Scholar
  32. [Wg 1]
    WIGHTMAN, A. S., Phys. Rev. 101, 860 (1956).zbMATHCrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • Konrad Osterwalder
    • 1
  1. 1.Harvard UniversityCambridge

Personalised recommendations