Advertisement

Probleme de Mecanique des Fluides, non Lineaires, Stationnaires en Meteorologie

  • Weill Alain
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 19)

Résumé

On compare dans l’étude de deux problèmes fondamentaux de perturbations d’obstacle dans des fluides stratifiés, la méthode de discrétisation explicite et les solutions qualitatives. On montre la difficulté de l’analyse numérique en présence de discontinuités et la nécessité d’optimiser les solutions analytiques.

Keywords

Nous Avons Internal Gravity Wave Solution Analytiques Grand Nombre Finite Difference Grid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. BRETHERTON F.P. J. Fluid Mech. 27 (3) 513–539 (1966): “The propagation of groups of internal gravity waves in a shear flow”.ADSGoogle Scholar
  2. CUNNINGHAM W.J. Dunod Paris (1963): “Analyse non linéaire”.Google Scholar
  3. CHANDRASEKHAR S. Clarendon Press (1961): “Hydrodynamic and Hydromagnetic stability”.Google Scholar
  4. DAVIS H.T. Dover Publication (1963): “Introduction to non linear differential and integral equations”.Google Scholar
  5. GERBIER W. et BERANGER M. J. Roy. Meteorol. Soc. (1961) 87 (371), 13–23 “Experimental studies of lee waves in the French Alps”.CrossRefADSGoogle Scholar
  6. KUETTNER J. Schweizer Aero Revue (1958) 33, 208–215: “The rotor flow in the lee of mountains”.Google Scholar
  7. LILLY D.K. J.G.R. (1971): “Observations of mountain induced turbulence”Google Scholar
  8. LONG R.R. Tellus (1953) 15, 42–58: “Some aspects of the flow of stratified fluids: a theorical investigation”.CrossRefADSGoogle Scholar
  9. MILNE W.E. John Wiley § Sons inc. (1953): “Numerical solution of differential Equations”.Google Scholar
  10. MINORSKY N. J.W. Edwards Publisher in Mich. (1947): “Introduction to non linear mechanics”.Google Scholar
  11. PANOV J. (1951) “U.R.S.S. formulas for the numerical solution of partial diff. eq. by the method of differences”.Google Scholar
  12. QUENEY P. Chicago Press (1947): “Theory of perturbations in stratified currents with application to air flow over mountains”.Google Scholar
  13. VERGEINER I. Quart. J.R. Met. Soc. (1971) 97 pp. 30–60: “An operational linear lee waves model for arbitrary basic flow and two-dimensional topography”.CrossRefADSGoogle Scholar
  14. VERONIS G. Tellus 22, 1 (1971): “A simple finite difference grid with non constant intervals”.MathSciNetGoogle Scholar
  15. WEILL A. C.R. Acad. Sc. Paris 171, 293–296 (1971): “Etude analytique des perturbations stationnaires engendrées par une discontinuité simple dans le champ du vent, à l’amont d’un obstacle dans un fluide stratifié”.Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • Weill Alain
    • 1
  1. 1.Laboratoire de météorologie dynamiqueFrance

Personalised recommendations