Skip to main content

Bau und Funktion isolierter markhaltiger Nervenfasern

  • Conference paper
  • First Online:
Ergebnisse der physiologie biologischen chemie und experimentellen pharmakologie

Part of the book series: Ergebnisse der Physiologie, biologischen Chemie und experimentellen Pharmakologie ((ERGEBPHYSIOL,volume 47))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Adrian, E. D.: The temperature coefficient of the refractory period in nerve. J. of Physiol. 48, 453 (1914).

    CAS  Google Scholar 

  • Adrian, E. D.: The mechanism of nervous action. London 1931.

    Google Scholar 

  • —, and D. W. Bronk: The discharge of impulses in motor nerve fibres. Teil I: Impulses in single fibres of the phrenic nerve. J. of Physiol. 66, 81 (1928).

    CAS  Google Scholar 

  • Autrum, H. J., u. D. Schneider: Der Kälteblock der einzelnen markhaltigen Nervenfaser. Naturwiss. 37, 21 (1950a).

    Google Scholar 

  • — Die Blockierung der Erregungsleitung in einzelnen markhaltigen Nervenfasern durch lokalen Druck. Naturwiss. 37, 46 (1950b).

    Google Scholar 

  • Baud, C.-A.: La texture protofibrillaire du neurite. Acta anat. (Basel) 10, 461 (1950).

    CAS  Google Scholar 

  • Baud, C.-A.: Ultrastructure de la fibre nerveuse en rapport avec sa fonction. Bull. Acad. Sci. Med. Suisse 8 (1952).

    Google Scholar 

  • Bernard, Claude: Leçons sur la physiologie et la pathologie du système nerveux, Bd. 1, S. 168. Paris 1858.

    Google Scholar 

  • Bernstein, J.: Elektrobiologie. Braunschweig 1912.

    Google Scholar 

  • Bethe, A.: Allgemeine Anatomie und Physiologie des Nervensystems. Leipzig 1903.

    Google Scholar 

  • Bishop, G. H., J. Erlanger and H. S. Gasser: Distortion of action potentials as recorded from the nerve surface. Amer. J. Physiol. 78, 592 (1926).

    Google Scholar 

  • Blinks, L. R.: The effect of current flow on bioelectrical potential, III. Nitella. J. Gen. Physiol. 20, 229 (1936).

    PubMed  CAS  Google Scholar 

  • Bonhoeffer, K. F.: Activation of passive iron as a model for the excitation of nerve. J. Gen. Physiol. 32, 69 (1948).

    PubMed  CAS  Google Scholar 

  • — Über das elektromotorische Verhalten von Eisen. Z. Elektrochem. angew. physik. Chem. 55, 151 (1951).

    CAS  Google Scholar 

  • —, u. U. F. Franck: Über die elektrolytische und die chemische Passivierung und Aktivierung von Eisen. Z. Elektrochem. angew. physik. Chem. 55, 180 (1951).

    CAS  Google Scholar 

  • Bonhoeffer, K. F. u. K. J. Vetter: Zur Aktivierung und Repassivierung von passivem Eisen in Salpetersäure. Z. physik. Chem. 196, 127 (1950).

    CAS  Google Scholar 

  • Booth, J., A. v. Muralt u. R. Stämpfli: The photochemical action of ultra-violet light on isolated single nerve fibres. Helvet. physiol. Acta 8, 110 (1950).

    CAS  Google Scholar 

  • Boyle, P. J., and E. J. Conway: Potassium accumulation in muscle and associated changes. J. of Physiol. 100, 1 (1941).

    CAS  Google Scholar 

  • Bremer, F.: Diskussionsbemerkung zu Huxley u. Stämpfli (1949b). Arch. Sci. physiol. 3, 321 (1949).

    Google Scholar 

  • Brink, F., D. W. Bronk and M. G. Larrabee: Chemical excitation of nerve. Ann. New York Acad. Sci. 47, 327 (1946).

    Google Scholar 

  • Cajal, S. R.: Histologie du système nerveux, Bd. 1, S. 269–275. Paris 1909.

    Google Scholar 

  • Causey, G.: The effect of pressure on nerve-fibre size. J. of Anat. 83, 32 (1949).

    Google Scholar 

  • —, and E. Palmer: Early changes in the shape and size of nerve fibres after crushing. J. of Anat. 84, 406 (1950).

    Google Scholar 

  • Cole, K. S.: Four lectures on biophysics. Rio de Janeiro Instituto de Biofisica da Universidade do Brasil 1947.

    Google Scholar 

  • — Some physical aspects of bioelectrical phenomena. Proc. Nat. Acad. Sci. U.S.A. 35, 558 (1949).

    CAS  Google Scholar 

  • — Rectification and induction in the squid giant axon. J. Gen. Physiol. 25, 29 (1941).

    PubMed  CAS  Google Scholar 

  • —, and R. F. Baker: Longitudinal impedance of the squid giant axon. J. Gen. Physiol. 24, 771 (1941).

    PubMed  CAS  Google Scholar 

  • —, and H. J. Curtis: Electric impedance of nerve and muscle. Cold Spring Harbor Symp. Quant. Biol. 4, 73 (1936).

    Google Scholar 

  • — Electric impedance of Nitella during activity. J. Gen. Physiol. 22, 37 (1938).

    PubMed  CAS  Google Scholar 

  • — Electric impedance of the squid giant axon during activity. J. Gen. Physiol. 22, 649 (1939).

    PubMed  CAS  Google Scholar 

  • — Membrane potential of the squid giant axon during current flow. J. Gen. Physiol. 24, 551 (1941).

    PubMed  CAS  Google Scholar 

  • —, and A. L. Hodgkin: Membrane and protoplasm resistance in the squid giant axon. J. Gen. Physiol. 22, 671 (1939).

    PubMed  CAS  Google Scholar 

  • Cox, R. T., C. W. Coates and M. V. Brown: Electrical characteristics of electric tissue. Ann. New York Acad. Sci. 47, 487 (1946).

    CAS  Google Scholar 

  • Crescitelli, F.: Nerve sheath as a barrier to the action of certain substances. Amer. J. Physiol. 166, 229 (1951).

    PubMed  CAS  Google Scholar 

  • —, and T. A. Geissman: Certain effects of antihistamines and related compounds on frog nerve fibers. Amer. J. Physiol. 164, 509 (1951).

    PubMed  CAS  Google Scholar 

  • Draper, M. H., and S. Weidmann: Cardiac resting and action potentials recorded with an intracellular electrode. J. of Physiol. 115, 74 (1951).

    CAS  Google Scholar 

  • Engelmann, Th. W.: Vergleichende Untersuchungen zur Lehre von der Muskel-und Nervenelektrizität. Pflügers Arch. 15, 116 (1877).

    Google Scholar 

  • Engström, A., and H. Lüthy: The distribution of mass and lipoids in the single nerve fiber. Exper. Cell. Res. 1, 143 (1950).

    Google Scholar 

  • Erlanger, J., and E. A. Blair: The irritability changes in nerve in response to subthreshold induction shocks, and related phenomena, including the relatively refractory phase. Amer. J. Physiol. 99, 108 (1931).

    Google Scholar 

  • — Manifestations of segmentation in myelinated axons. Amer. J. Physiol. 110, 287 (1934).

    Google Scholar 

  • — Observations on repetitive responses in axons. Amer. J. Physiol. 114, 328 (1935).

    Google Scholar 

  • — The action of isotonic, salt-free solutions on conduction in medullated nerve fibres. Amer. J. Physiol. 124, 341 (1938).

    CAS  Google Scholar 

  • Erlanger, J., and H. S. Gasser: Electrical signs of nervous activity. Philadelphia 1937.

    Google Scholar 

  • Feindel, W. H., and A. C. Allison: Nodes in the central nervous system. Nature (Lond.) 163, 449 (1949).

    Google Scholar 

  • Feindel, W. H., A. C. Allison, and G. Weddell: Intravenous methylene blue for experimental studies of the central nervous system. J. Neurol. Neurosurg. Psychiat. 11, 227 (1948).

    PubMed  CAS  Google Scholar 

  • D. C. Sinclair and G. Weddell: A new method for investigating the nervous system. Brain 70, 495 (1947).

    PubMed  CAS  Google Scholar 

  • Feng, T. P., and R. W. Gerard: Mechanism of nerve asphyxiation; with a note on the nerve sheath as diffusion barrier. Proc. Soc. Exper. Biol. a. Med. 27, 1073 (1930).

    Google Scholar 

  • —, and Y. M. Liu: The connective tissue sheath of nerve as an effective diffusion barrier. J. Cellul. a. Comp. Physiol 34, 1 (1949).

    CAS  Google Scholar 

  • Fenn, W. O.: Electrolytes in muscle. Physiologic. Rev. 16, 450 (1936).

    CAS  Google Scholar 

  • D. M. Cobb, A. H. Hegnauer and B. S. Marsh: Electrolytes in nerve. Amer. J. Physiol. 110, 74 (1934).

    CAS  Google Scholar 

  • Fernández-Morán, H.: Electron microscope observations on the structure of the structure of the myelinated nerve fiber sheath. Exper. Cell. Res. 1, 143 (1950a).

    Google Scholar 

  • — Sheath and axon structures in the internode portion of vertebrate myelinated nerve fibers. Exper. Cell. Res. 1, 309 (1950b).

    Google Scholar 

  • — Diffraction of electrons by structures resembling myelin lamellae. Exper. Cell. Res. 2, 673 (1951).

    Google Scholar 

  • Fernández-Morán: The submicroscopic organization of vertebrate nerve fibers as revealed by electron microscopy. Diss. Uppsala 1952.

    Google Scholar 

  • Fessard, A.: Some basic aspects of the activity of electric plates. Ann. New York Acad. Sci. 47, 501 (1946).

    Google Scholar 

  • Forbes, A.: Diskussion zu C. C. Speidel. Cold Spring Harbor Symp. Quant. Biol. 4, 13 (1936).

    Google Scholar 

  • Franck, U. F.: Elektrochemische Modelle zur saltatorischen Nervenleitung. Z. Elektrochem. angew. physik. Chem. 55, 535 (1951).

    CAS  Google Scholar 

  • Frankenhäuser, B.: J. of Physiol. im Druck (1952).

    Google Scholar 

  • —, and D. Schneider: Some electrophysiological obervations on isolated single myelinated nerve fibers (saltatory conduction). J. of Physiol. 115, 177 (1951).

    Google Scholar 

  • Fry, W. J., and R. B. Fry: A possible mechanism involved in the conduction process of thin sheated nerves. J. Cellul. a. Comp. Physiol. 36, 229 (1950).

    CAS  Google Scholar 

  • Fujita, M., and I. Tasaki: Action currents of single nerve fibers as modified by temperature changes. J. of Neurophysiol. 11, 311 (1948).

    Google Scholar 

  • Gasser, H. S., and H. Grundfest: Axon diameters in relation to the spike dimensions and the conduction velocity in mammalian A fibers. Amer. J. Physiol. 127, 393 (1939).

    Google Scholar 

  • Gerard, R. W.: Nerve metabolism. Physiologic. Rev. 12, 469 (1932).

    CAS  Google Scholar 

  • Gray, J. A. B., u. G. Svaetichin: Electrical properties of platinum tipped microelectrodes in Ringers solution. Acta physiol. scand. (Stockh.) 24, 278 (1951).

    CAS  Google Scholar 

  • Guttman, R.: Electrical impedance of muscle at cut and uncut surfaces. J. Cellul. a. Comp. Physiol. 18, 403 (1941).

    Google Scholar 

  • Harreveld, A. van: The potassium permeability of the myelin sheath of vertebrate nerve. J. Cellul. a. Comp. Physiol. 35, 331 (1950).

    Google Scholar 

  • Hermann, L.: Beiträge zur Physiologie und Physik des Nerven. Pflügers Arch. 109, 95 (1905).

    Google Scholar 

  • Hertz, H.: Action potential and diameter of isolated nerve fibres under various conditions. Acta physiol. scand. (Stockh.) 13, Suppl. 43, 1 (1947).

    Google Scholar 

  • Hess, A., and J. Z. Young: Nodes of Ranvier in the central nervous system. J. of Physiol. 108, 52 P (1949).

    Google Scholar 

  • Hill, A. V.: Excitation and accommodation in nerve. Proc. Roy. Soc. Lond., Ser. B 119, 305 (1936).

    Google Scholar 

  • Hill, D. K.: The effect of stimulation on the opacity of a crustacean nerve trunk and its relation to fibre diameter. J. of Physiol. 111, 283 (1950).

    CAS  Google Scholar 

  • Hodgkin, A. L.: Evidence for electrical transmission in nerve I u. II. J. of Physiol. 90, 183 (1937).

    CAS  Google Scholar 

  • — The subtreshold potentials in crustacean nerve fibre. Proc. Roy. Soc. Lond., Ser. B 126, 78 (1938).

    Google Scholar 

  • — The ionic basis of electrical activity in nerve and muscle. Biol. Rev. Cambridge Philos. Sec. 26, 339 (1951).

    CAS  Google Scholar 

  • — and A. F. Huxley: Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J. of Physiol. 116, 449 (1952a).

    CAS  Google Scholar 

  • — The components of membrane conductance in the giant axon of Loligo. J. of Physiol. 116, 473 (1952b).

    CAS  Google Scholar 

  • — The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J. of. Physiol. 116, 497 (1952c).

    CAS  Google Scholar 

  • — and B. Katz: Ionic currents underlying activity in the giant axon of the squid. Arch. Sci. Physiol. 3, 129 (1949).

    CAS  Google Scholar 

  • — Measurement of current-voltage relations in the membrane of the giant axon Loligo. J. of Physiol. 116, 424 (1952).

    CAS  Google Scholar 

  • — and B. Katz: The effect of sodium ions of the electrical activity of the giant axon of the squid. J. of Physiol. 108, 37 (1949).

    CAS  Google Scholar 

  • Hodler, J., R. Stämpfli u. I. Tasaki: Über die Wirkung internodaler Abkühlung auf die Erregungsleitung in der isolierten markhaltigen Nervenfaser des Frosches. Pflügers Arch. 253, 380 (1951).

    PubMed  CAS  Google Scholar 

  • Hodler, J., R. Stämpfli u. I. Tasaki: The rôle of the potential wave spreading along the myelinated nerve fiber in excitation and conduction. Amer. J. Physiol. im Druck (1952).

    Google Scholar 

  • Höber, R.: Lehrbuch der Physiologie des Menschen. Bern 1939.

    Google Scholar 

  • Hutton-Rudolph, M.: Photochemische Versuche an einzelnen Nervenfasern. Diss. Hallerianum Bern 1944.

    Google Scholar 

  • Huxley, A. F.: Demonstration von der Physiological Society of Great Britain 1948.

    Google Scholar 

  • — u. R. Stämpfli: Beweis der saltatorischen Erregungsleitung im markhaltigen peripheren Nerven. Helvet. physiol. Acta 6, C 22 (1948).

    CAS  Google Scholar 

  • — Evidence for saltatory conduction in peripheral myelinated nerve fibres. J. of Physiol. 108, 315 (1949a).

    Google Scholar 

  • — Saltatory transmission of the nervous impluse. Arch. Sci. Physiol. 3, 435 (1949b).

    Google Scholar 

  • — Direkte Bestimmung des Membranpotentials der markhaltigen Nervenfaser in Ruhe und Erregung. Helvet. physiol. Acta 8, 107 (1950).

    CAS  Google Scholar 

  • — Direct determination of membrane resting potential and action potential in single myelinated nerve fibres. J. of Physiol. 112, 476 (1951a).

    CAS  Google Scholar 

  • — Effect of potassium and sodium on resting and action potential of single myelinated nerve fibres. J. of. Physiol. 112, 496 (1951b).

    CAS  Google Scholar 

  • Kano, H., and I. Tasaki: Isolation of cutaneous and muscular afferent fibers. Proc. Jap. Physiol. Soc. 21. Verslg. Jap. J. Med. Sci. 9, No 2 (1942).

    Google Scholar 

    Google Scholar 

  • Kato, G.: Microphysiology of nerve. Tokyo 1934.

    Google Scholar 

  • — On the excitation, conduction and narcotisation of single nerve fibres. Cold Spring Harbor Symp. Quant. Biol. 4, 202 (1936).

    CAS  Google Scholar 

  • Kato, G.: Neuere Untersuchungen an einzelnen Nervenfasern. Abh. exakt. Biol. 1941, H. 2, 121.

    Google Scholar 

  • Katz, B.: Experimental evidence for a non-conducted response of nerve to subthreshold stimulation. Proc. Roy. Soc. Lond., Ser. B 124, 244 (1937).

    Google Scholar 

  • Katz, B.: Electric excitation of nerve. Oxford 1939.

    Google Scholar 

  • — Impedance changes in frog's muscle associated with electrotonic and „endplate” potentials. J. of Neurophysiol. 5, 169 (1942).

    Google Scholar 

  • Key, A., u. G. Retzius: Studien in der Anatomie des Nervensystems und des Bindegewebes, Bd. 2, S. 102. Stockholm: Samson u. Wallin 1876.

    Google Scholar 

  • Kölliker, A.: Handbuch der Gewebelehre des Menschen, Bd. 2, S. 4. Leipzig 1896.

    Google Scholar 

  • Kornmüller, A. E.: Die Elemente der nervösen Tätigkeit. Stuttgart 1947.

    Google Scholar 

  • Kubo, M., u. Ono (1934): Zit. nach Kato 1941.

    Google Scholar 

  • Kuffler, S. W.: A second motor nerve system to frog skeletal muscle. Proc. Soc. Exper. Biol. a. Med. 63, 21 (1946).

    CAS  Google Scholar 

  • —, and R. W. Gerard: The small-nerve motor system to skeletal muscle. J. of Neurophysiol. 10, 383 (1947).

    CAS  Google Scholar 

  • Y. Laporte and R. E. Ransmeier: The function of the frog's small-nerve motor system. J. of Neurophysiol. 10, 395 (1947).

    CAS  Google Scholar 

  • Kuffler, S. W. Y. Laporte and R. E. Ransmeier: Reflex activity of the frog's small-nerve motor system. Federat. Proc. 6, No. 1 (1947).

    Google Scholar 

    Google Scholar 

  • Laporte, Y.: Conduction continue dans les fibres nerveuses myélinées périphériques. Abstr. 18. Internat. Physiol.-Congr., 1950, S. 327.

    Google Scholar 

  • — De la conduction continue dans les fibres nerveuses myélinisés périphériques. J. Physiol. et Path. gén. 42, 463 (1950b).

    CAS  Google Scholar 

  • — Continuous conduction of impulses in peripheral myelinated nerve fibers. J. Gen. Physiol. 35, 343 (1951).

    PubMed  CAS  Google Scholar 

  • Lehmann, H. J.: Das quantitative Verhalten der Nervensegmente und die Theorie der saltatorischen Erregungsleitung. Z. Zellforsch. 36, 273 (1951).

    PubMed  CAS  Google Scholar 

  • Lillie, R. S.: Protoplasmic action and nervous action. Chicago: University Press 1923.

    Google Scholar 

  • — Factors affecting transmission and recovery in the passive iron nerve model. J. Gen. Physiol. 7, 473 (1925).

    PubMed  CAS  Google Scholar 

  • Ling, G., and R. W. Gerard: The normal membrane potential of frog sartorius fibres. J. Cellul. a. Comp. Physiol. 34, 382 (1949).

    Google Scholar 

  • Lloyd, D. P., and Hsiang-Tung Chang: Afferent fibers in muscle nerves. J. of Neurophysiol. 11, 199 (1948).

    CAS  Google Scholar 

  • Lorente de Nó, R.: A study of nerve physiology. I u. II. Stud. Rockefeller Inst. 131 u. 132 (1947).

    Google Scholar 

  • Lorente de Nó, R.: On the effect of certain quaternary ammonium ions upon frog nerve. J. Cellul. a. Comp. Physiol. 33, Suppl. 1 (1949).

    Google Scholar 

    Google Scholar 

  • — The ineffectiveness of the connective tissue sheath of nerve as a diffusion barrier. J. Cellul. a. Comp. Physiol. 35, 195 (1950).

    Google Scholar 

  • Lüthy, H.: Optische Interpretation der Quermembran im Ranvierschen Schnürring. Experientia (Basel) 6, 381 (1950).

    Google Scholar 

  • — Absorptionsspektrophotometrie markloser und markhaltiger Nervenfasern im natürlichen und polarisierten ultravioletten Licht. Pflügers Arch. 253, 477 (1951).

    PubMed  Google Scholar 

  • Lullies, H.: Über die Polarisation in Geweben. III. Mitteilung. Die Polarisation im Nerven. II. Pflügers Arch. 225, 87 (1930).

    Google Scholar 

  • Marmont, G.: Studies on the axon membrane. I. A new method. J. Cellul. a. Comp. Physiol. 34, 351 (1949).

    CAS  Google Scholar 

  • Monnier, A. M.: Les bases physico-chimiques de l'action du calcium sur l'activité nerveuse. Arch. Sci. Physiol. 3, 55 (1949).

    Google Scholar 

  • —, et G. Coppée: Nouvelles recherches sur la résonance des tissues excitables. I. Relations entre la rythmicité de la réponse nerveuse et la résonance. Arch. internat. Physiol. 48, 129 (1939).

    Google Scholar 

  • Mullins, L. J.: Uptake of phosphate by frog axons. Federat. Proc. 9, 93 (1950).

    Google Scholar 

  • Muralt, A. v.: Zusammenhänge zwischen physikalischen und chemischen Vorgängen bei der Muskelkontraktion. Erg. Physiol. 37, 406 (1935).

    Google Scholar 

  • -: Polarographischer und optischer Nachweis des Austrittes von Aktionssubstanzen aus einem künstlichen Nervenquerschnitt. Helvet. physiol. Acta 1, C 20 (1943).

    Google Scholar 

  • Muralt, A. v.: Die Signalübermittlung im Nerven. Basel 1946.

    Google Scholar 

  • Muralt, A.v.: The submicroscopic structure of the peripheral nerve. Proc. 6. Internat. Congr. Exper. Cytology 1947a.

    Google Scholar 

  • -: Über die Bedeutung der Quermembran des markhaltigen Nerven für die saltatorische Fortpflanzung der Erregungswelle. Helvet. physiol. Acta 5, C 45 (1947b).

    Google Scholar 

  • Muralt, A. v.: Photochemische Versuche an einzelnen Nervenfasern. Bull. schweiz. Akad. med. Wiss. 6, 205 (1950).

    Google Scholar 

  • Nastuk, W. L., and A. L. Hodgkin: The electrical activity of single muscle fibres. J. Cellul. a. Comp. Physiol. 35, 39 (1950).

    CAS  Google Scholar 

  • Nauck, E. Th.: Bemerkungen über den mechanisch-funktionellen Bau des Nerven. Anat. Anz. (Erg.-H.) 72, 260 (1931).

    Google Scholar 

  • Parrack, H. O.: Excitability of the excised and circulated frog's sciatic nerve. Amer. J. Physiol. 130, 481 (1940).

    Google Scholar 

  • Pfaffmann, C.: Potentials in the isolated medullated axon. J. Cellul. a. Comp. Physiol. 16, 407 (1940).

    Google Scholar 

  • Pflüger, E.: Physiologie des Elektrotonus. Berlin 1859.

    Google Scholar 

  • Pumphrey, R. J., and J. Z. Young: The rates of conduction of nerve fibres of various diameters in cephalopods. J. of exper. Biol. 15, 453 (1938).

    Google Scholar 

  • Ranvier, L.: Traité téchnique d'histologie. Paris 1875.

    Google Scholar 

  • Rashbass, C., and W. A. H. Rushton: The relation of structure to the spread of excitation in the frog's sciatic trunk. J. of Physiol. 110, 110 (1949).

    CAS  Google Scholar 

  • Rein, H.: Physiologie des Menschen. Berlin 1947.

    Google Scholar 

  • Rexed, B., and P. Therman: Caliber spectra of motor and sensory nerve fibres to flexor and extensor muscles. J. of Neurophysiol. 11, 133 (1948).

    CAS  Google Scholar 

  • Rice, L. H., and H. Davis: Uniformity of narcosis in peripheral nerve. Amer. J. Physiol. 87, 73 (1928).

    Google Scholar 

  • Ritter, I. W.: Beiträge zur näheren Kenntnis des Galvanismus, Bd. 2. Jena 1802. Zit. bei E. Pflüger, Physiologie des Elektrotonus. Berlin 1859.

    Google Scholar 

  • Robertis, E. de, and F. O. Schmitt: An electron microscope analysis of certain nerve axon constituents. J. Cellul. a. Comp. Physiol. 31, 1 (1948).

    Google Scholar 

  • Rössel, W.: Der Einfluß der Nervenhüllen auf die elektrolytische Polarisation und die Erregbarkeit des Frosch-Ischiadicus. Pflügers Arch. 246, 543 (1943).

    Google Scholar 

  • Rosenblueth, A., N. Wiener, W. Pitts and J. Garcia Ramos: An account of the spike potential of axons. J. Cellul. a. Comp. Physiol. 32, 275 (1948).

    Google Scholar 

  • Rozsa, G., C. Morgan, A. Szent-Györgyi and R. W. G. Wyckoff: The electron microscopy of myelinated nerve. Biochim. et Biophysica Acta 6, 13 (1950a).

    CAS  Google Scholar 

  • —, — The electron microscopy of sectioned nerve. Science 112, 42 (1950).

    PubMed  CAS  Google Scholar 

  • Rushton, W. A. H.: Excitation of bent nerve. J. of Physiol. 65, 173 (1928).

    CAS  Google Scholar 

  • — Initiation of the propagated disturbance. Proc. Roy. Soc. Lond., Ser. B 124, 210 (1937).

    Google Scholar 

  • — A theory of the effects of fibre size in medullated nerve. J. of Physiol. 115, 101 (1951).

    CAS  Google Scholar 

  • Sakamoto, S.: Elektrische Reizung einer einzelnen motorischen Nervenfaser durch Gleichspannung. Pflügers Arch. 231, 489 (1933).

    Google Scholar 

  • Sanders, F. K., and D. Whitteridge: Conduction velocity and myelin thickness in regenerating nerve fibres. J. of Physiol. 105, 152 (1946).

    Google Scholar 

  • Sato, M.: Comparative measurements of accommodation in two nerve fibers of different sizes. Jap. J. Physiol. 1, 309 (1951).

    CAS  Google Scholar 

  • —, M. Nadao, Ch. Terauchi, T. Yamanaka and M. Matsumoto: The accommodation curves of nerve and nerve fiber, with special reference to the „breakdown of accommodation”, and the effects of Veratrine, Guanidine and Aconitine upon them. Jap. J. Physiol. 1, 255 (1951).

    CAS  Google Scholar 

  • —, and J. Usiyama: On the relation of strength-frequency curve in excitation by low frequency A. C. to the minimal gradient of the nerve fiber. Jap. J. Physiol. 1, 141 (1950).

    Google Scholar 

  • Sjöstrand, F.: An electron microscope study of the retinal rods of the guinea pig eye. J. Cellul. a. Comp. Physiol. 33, 383 (1949).

    Google Scholar 

  • — Electron-microscopic demonstration of a membrane structure isolated from nerve tissue. Nature (Lond.) 165, 482 (1950).

    Google Scholar 

  • Sjöstrand, F.: A method for making ultra-thin tissue sections for electron microscopy at high resolution. Nature (Lond.) 168, 646 (1951).

    Google Scholar 

  • Schmitt, F. O.: The ultrastructure of the nerve myelin sheath. Multiple sclerosis and the demyelinating diseases. 28, 247 (1950a).

    CAS  Google Scholar 

  • —The structure of the axon filaments of the giant nerve fibers of Loligo and Myxicola. J. of Exper. Zool. 113, 499 (1950b).

    Google Scholar 

  • —, and B. B. Geren: The fibrous structure of the nerve axon in relation to the localization of „neurotubules”. J. of Exper. Med. 91, 499 (1950).

    CAS  Google Scholar 

  • Schmitz, W., u. H. Schäfer: Zum Nachweis der Polarisationskapazität am Nerven. Pflügers Arch. 232, 20 (1933).

    Google Scholar 

  • Schneider, D.: Die lokale Reizung und Blockierung im Internodium der isolierten markhaltigen Nervenfaser des Frosches. Z. vergl. Physiol. 32, 507 (1950).

    Google Scholar 

  • — Die Dehnbarkeit der markhaltigen Nervenfaser des Frosches in Abhängigkeit von Funktion und Struktur. Z. Naturforsch. 7b, 38 (1952).

    Google Scholar 

  • Schoepfle, G. M., and J. Erlanger: The action of temperature on the excitability, spike height and configuration and the refractory period observed in the responses of single medullated nerve fibers. Amer. J. Physiol. 134, 694 (1941).

    Google Scholar 

  • Schriever, H.: Über Einschleichen von Strom. Z. Biol. 93, 123 (1932).

    Google Scholar 

  • —, u. R. Cebulla: Über die Erregbarkeitsänderung des Nerven beim Übergang von nicht-rhythmischer zu rhythmischer Reizbeantwortung. Pflügers Arch. 241, 1 (1938).

    Google Scholar 

  • Stämpfli, R.: Untersuchungen an der einzelnen lebenden Nervenfaser des Froschs. Helvet. physiol. Acta 4, 411 (1946).

    Google Scholar 

  • — La segmentation de la fibre nerveuse myélinisée. J. de Physiol. 40, 313 A (1948).

    Google Scholar 

  • —, u. Y. Zottermann: Nachweis der saltatorischen Erregungsleitung am intakten Nervenstamm. Helvet. physiol. Acta 9, 208 (1951).

    Google Scholar 

  • Svaetichin, G.: A combination of microscopes and micro-manipulators for electrophysiological investigations on single nerve cells. Acta physiol. scand. (Stockh.) 24, Suppl. 86 (1951).

    Google Scholar 

    Google Scholar 

  • Svaetichin, G.: Low resistance micro-electrodes. Acta physiol. scand. (Stockh.) 24, Suppl. 86 (1951).

    Google Scholar 

    Google Scholar 

  • Takeuchi, T., u. I. Tasaki: Übertragung des Nervenimpulses in der polarisierten Nervenfaser. Pflügers Arch. 246, 32 (1942).

    Google Scholar 

  • Tasaki, I.: The strength-duration relation of the normal polarized and narcotized nerve fiber. Amer. J. Physiol. 125, 367 (1939a).

    Google Scholar 

  • — Electric stimulation and the excitatory process in the nerve fiber. Amer. J. Physiol. 125, 380 (1939b).

    Google Scholar 

  • — The electro-saltatory transmission of the nerve impulse and the effect of narcosis upon the nerve fiber. Amer. J. Physiol. 127, 211 (1939c).

    Google Scholar 

  • — Mikrophysiologische Untersuchung über die Grundlage der Erregungsleitung in der markhaltigen Nervenfaser. Pflügers Arch. 244, 125 (1940).

    Google Scholar 

  • — Das Schwellenabsinken bei Reizung einer Nervenfaser mit kurzen Stromstößen. Pflügers Arch. 245, 665 (1942).

    Google Scholar 

  • — Collision of two nerve impulses in the nerve fibre. Biochim. et Biophysica Acta 3, 494 (1949a).

    Google Scholar 

  • — The excitatory and recovery processes in the nerve fibre as modified by temperature changes. Biochim. et Biophysica Acta 3, 498 (1949b).

    Google Scholar 

  • — Electrical excitation of the nerve fiber. Teil I. Excitation by linearly increasing currents. Jap. J. Physiol. 1, 1 (1950a).

    Google Scholar 

  • — Nature of the local excitatory state in the nerve fiber. Jap. J. Physiol. 1, 75 (1950b).

    Google Scholar 

  • — The threshold conditions in electrical excitation of the nerve fiber. Teil I. Cytologia 15, 205 (1950c).

    Google Scholar 

  • — The threshold conditions in electrical excitation of the nerve fiber. Teil II. Cytologia 15, 219 (1950d).

    Google Scholar 

  • —, and M. Fujita: Action currents of single nerve fibers as modified by temperature changes. J. of Neurophysiol. 11, 311 (1948).

    Google Scholar 

  • Tasaki, I.: K. Ishii and H. Ito: On the relation between the conduction-rate, the fibre-diameter and the internodal distance of the medullated nerve fibre. Jap. J. Med. Sci. 9, 189 (1943).

    Google Scholar 

  • Tasaki, I., and H. Kano: Isolation of slow motor fiber. Proc. Jap. Physiol. Soc. 21. Verslg. Jap. J. Med. Sci., Trans. Biophysics 9, No. 2 (1942).

    Google Scholar 

    Google Scholar 

  • —, and K. Mizuguchi: Response of single Ranvier nodes to electrical stimuli. J. of Neurophysiol. 11, 295 (1948).

    CAS  Google Scholar 

  • — The changes in the electric impedance during activity and the effect of alkaloids and polarisation upon bioelectric processes in the myelinated nerve fibre. Biochim. et Biophysica Acta 3, 484 (1949).

    CAS  Google Scholar 

  • — and K. Tasaki: Modification of the electric response of a single Ranvier node by narcosis, refractoriness and polarisation. J. of Neurophysiol. 11, 305 (1948).

    CAS  Google Scholar 

  • —, and K. Mizutani: Comparative studies on the activities of the muscle evoked by two kinds of motor nerve fibres. Teil I. Myographic studies. Jap. J. Med. Sci., Trans. Biophysics 10, 237 (1944).

    Google Scholar 

  • —, and M. Sakaguchi: Electrical excitation of the nerve fiber. Teil II. Excitation by exponentially increasing currents. Jap. J. Physiol. 1, 7 (1950).

    Google Scholar 

  • —, and M. Sato: On the relation of the strength-frequency curve in excitation by alternating current to the strength-duration and latent addition curves of the nerve fiber. J. Gen. Physiol. 34, 373 (1951).

    PubMed  CAS  Google Scholar 

  • —, u. T. Takeuchi: Der am Ranvierschen Knoten entstehende Aktionsstrom und seine Bedeutung für die Erregungsleitung. Pflügers Arch. 244 696 (1941).

    Google Scholar 

  • — Weitere Studien über den Aktionsstrom der markhaltigen Nervenfaser und über die elektrosaltatorische Übertragung des Nervenimpulses. Pflügers Arch. 245, 764 (1942).

    Google Scholar 

  • —, and M. Tsukagoshi: Comparative studies on the activities of the muscle evoked by two kinds of motor nerve fibres. Teil II. Electromyogram. Jap. J. Med. Sci., Trans. Biophysics 10, 245 (1944).

    Google Scholar 

  • —, u. J. Ushiyama: Über den Effekt von Saponin und anderen Chemikalien auf die Erregungsleitung der einzelnen markhaltigen Nervenfaser. Helvet. physiol. Acta 8, C 77 (1950).

    Google Scholar 

  • Tasaki, N., and I. Tasaki: The electrical field which a transmitting nerve fiber produces in the fluid medium. Biochimica et Biophysica Acta 5, 335 (1950).

    PubMed  CAS  Google Scholar 

  • Thomas, P. K., and J. Z. Young: Internode lengths in the nerves of fishes. J. of Anat. 83, 336 (1949).

    CAS  Google Scholar 

  • Tobias, J. M.: Qualitative observations on visible changes in single frog, squid and other axones subjected to electrical polarization. Implications for excitation and conduction. J. Cellul. a. Comp. Physiol. 37, 91 (1951).

    CAS  Google Scholar 

  • —, and S. Solomon: Opacity and diameter changes in polarized nerve. J. Cellul. a. Comp. Physiol. 35, 25 (1950).

    CAS  Google Scholar 

  • Tsunematsu: Zit. in I. Tasaki, Pflügers Arch. 245, 665 (1942).

    Google Scholar 

  • Valentin, G.: Die Zuckungsgesetze des lebenden Nerven und Muskels. Leipzig u. Heidelberg: Winter 1863.

    Google Scholar 

  • Vizoso, A. D., and J. Z. Young: Internode length and fibre diameter in developing and regenerating nerves. J. of Anat. 82, 110 (1948).

    Google Scholar 

  • Weidmann, S.: Ein schnell registrierender Polarograph. Inaug.-Diss. Bern 1947.

    Google Scholar 

  • — Initiation of break response in Nitella. Acta physiol. scand. (Stockh.) 19, 230 (1949)

    Google Scholar 

  • Weiss, P.: Damming of axoplasm in constricted nerve: a sign of perpetual growth in nerve fibers. Anat. Rec. 88, 464 (1944).

    Google Scholar 

  • —, and H. B. Hiscoe: Experiments on the mechanism of nerve growth. J. of Exper. Zool. 107, 315 (1949).

    Google Scholar 

  • Woodbury, J. W., and L. A. Woodbury: Membrane resting and action potentials from excitable tissues. Federat. Proc. 9, 139 (1950).

    Google Scholar 

  • Woodbury, L. A., J. W. Woodbury and H. H. Hecht: Membrane resting and action potentials of single cardiac muscle fibres. Circulation 1, 264 (1950).

    PubMed  CAS  Google Scholar 

  • Yamagiwa, K.: The active area in course of excitation conduction (observations on Lillies nerve model). Jap. Med. J. 1, 439 (1948a).

    Google Scholar 

  • — Interactions between active elements. Jap. Med. J. 1, 557 (1948b).

    Google Scholar 

  • — A model for the synapse (Lillies nerve model modified). Jap. Med. J. 2, 38 (1949a).

    Google Scholar 

  • — A special case of interaction (further observations on Lillies nerve model). Jap. Med. J. 2, 93 (1949b).

    Google Scholar 

  • — The conduction velocity in relation to the stimulation intensity and to the size of the activated area (observations on Lillies nerve model). Jap. Med. J. 2, 217 (1949c).

    Google Scholar 

  • — The interactions in various manifestations (observations on Lillies nerve model). Teil I. The accelerating action. Jap. J. Physiol. 1, 40 (1951a).

    Google Scholar 

  • — The interaction in various manifestations (observations on Lillies nerve model). Teil II. The effects on the distance travelled and the refractory period. Jap. J. Physiol. 1, 48 (1951b).

    Google Scholar 

  • — Facilitation and inhibition, model experiments and a new hypothesis. Jap. J. Physiol. 1, 195 (1951c).

    Google Scholar 

  • Young, J. Z.: Narrowing of nerve fibres at the nodes of Ranvier. J. of Anat. 83, 55 (1949).

    CAS  Google Scholar 

  • Young, J. Z., A. D. Vizoso and P. H. Shepherd: The structure, spacing and significance of the nodes of Ranvier. 17. internat. Physiol.-Congr. Oxford 1947, S. 103.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1952 Springer-Verlag

About this paper

Cite this paper

Stämpfli, R. (1952). Bau und Funktion isolierter markhaltiger Nervenfasern. In: Ergebnisse der physiologie biologischen chemie und experimentellen pharmakologie. Ergebnisse der Physiologie, biologischen Chemie und experimentellen Pharmakologie, vol 47. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0112451

Download citation

  • DOI: https://doi.org/10.1007/BFb0112451

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-01626-7

  • Online ISBN: 978-3-540-36969-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics