Skip to main content

Microwave multiphoton excitation and ionization

  • Chapter
  • First Online:
Atoms and Molecules in Intense Fields

Part of the book series: Structure and Bonding ((STRUCTURE,volume 86))

  • 79 Accesses

Abstract

Using Rydberg atoms and microwave fields it has been possible to observe virtually all one electron strong field phenomena. The attraction of these experiments is that they can be more controlled than most laser experiments, with the result that more quantitative information can be extracted. The insights gained from these experiments can be profitably transferred to optical experiments. To demonstrate the latter point we demonstrate that apparently non-resonant microwave ionization, in fact, occurs by resonant transitions through intermediate states. These experiments demonstrated clearly the power of Floquet analysis of such processes, and the ideas were subsequently applied to the analogous problem of laser multiphoton ionization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Svanberg S, Larsson J, Persson A, Wahlström CG (1994) Phys Scr 49: 187

    Article  CAS  Google Scholar 

  2. Bayfield JE, Koch PM (1974) Phys Rev Lett 33: 258

    Article  CAS  Google Scholar 

  3. Bethe HA, Salpeter EA (1957) Quantum mechanics of one two electron atoms. Academic Press, New York

    Google Scholar 

  4. Gallagher TF (1994) Rydberg atoms. Cambridge University Press, Cambridge

    Google Scholar 

  5. Gallagher TF (1992) In: Gavrila M (ed) Atoms in intense laser fields. Academic Press, Cambridge

    Google Scholar 

  6. Mariani DR, van de Water W, Koch PM, Bergeman T (1983) Phys Rev Lett 50: 1261

    Article  CAS  Google Scholar 

  7. Pillet P, Smith WW, Kachru R, Tran NH, Gallagher TF (1988) Phys Rev Lett 50: 1042

    Article  Google Scholar 

  8. Pillet P, van Linden van den Heuvell HB, Smith WW, Kachru R, Tran NH, Gallagher TF (1984) Phys Rev A 30: 280

    Article  CAS  Google Scholar 

  9. Gatzke M, Baruch MC, Watkins RB, Gallagher TF (1994) Phys Rev 50: 2502

    Article  CAS  Google Scholar 

  10. Fu P, Scholz TJ, Hettema JM, Gallagher TF (1990) Phys Rev Lett 64: 511

    Article  CAS  Google Scholar 

  11. van de Water W, Yoakum S, van Leeuwen T, Sauer BE, Moorman L, Galvez EJ, Mariani DR, Koch PM (1990) Phys Rev A 42: 872

    Article  Google Scholar 

  12. Cheng CH, Lee CY, Gallagher TF (1994) Phys Rev Lett 73: 3078

    Article  CAS  Google Scholar 

  13. van Leeuwen KAH, Oppen GV, Rennick S, Bowlin JB, Koch PM, Jensen RV, Rath O, Richards D, Leopold JG (1985) Phys Rev Lett 55: 2231

    Article  Google Scholar 

  14. Jensen RV, Susskind SM, Sanders MM (1991) Phys Rept 201: 1

    Article  CAS  Google Scholar 

  15. Mahon CR, Dexter JL, Pillet P, Gallagher TF (1991) Phys Rev A 44: 1859

    Article  CAS  Google Scholar 

  16. Eichmann U, Dexter JL, Xu EY, Gallagher TF (1989) Z Phys D 11: 187

    Article  CAS  Google Scholar 

  17. Bloomfield LA, Stoneman RC, Gallagher TF (1986) Phys Rev Lett 57: 2512

    Article  CAS  Google Scholar 

  18. Stoneman RC, Thomson DS, Gallagher TF (1988) Phys Rev A 37: 1527

    Article  CAS  Google Scholar 

  19. Stoneman RC, Janik GR, Gallagher TF (1986) Phys Rev A 34: 2952

    Article  CAS  Google Scholar 

  20. Shirley J (1965) Phys Rev 138: 13979

    Google Scholar 

  21. Sambe H (1973) Phys Rev A 7: 2203

    Article  Google Scholar 

  22. Christiansen-Dalsgaard B (1990) unpublished

    Google Scholar 

  23. Autler SH, Townes CH (1955) Phys Rev Lett 100: 703

    Google Scholar 

  24. Abramowitz M, Stegun IA (1964) Handbook of Mathematical Functions, Nat Bur Stand Appl Math Ser No 55, US GPO, Washington, DC

    Google Scholar 

  25. Gatzke MA, Baruch MC, Watkins RB, Gallagher TF (1993) Phys Rev A48: 4742

    Google Scholar 

  26. Breuer HP, Dietz K, Holthaus M (1988) Z Phys D 10: 13

    Article  CAS  Google Scholar 

  27. Baruch MC, Gallagher TF (1992) Phys Rev Lett 68: 3515

    Article  CAS  Google Scholar 

  28. Yoakum S, Sirko L, Koch PM (1992) Bull Am Phys Soc 37: 1105

    Google Scholar 

  29. van Linden van den Heuvell HP, Kachru R, Tran NH, Gallagher TF (1984) Phys Rev Lett 53: 1901

    Article  Google Scholar 

  30. Pillet P, Mahon CR, Gallagher TF (1988) Phys Rev Lett 60: 21

    Article  CAS  Google Scholar 

  31. Freeman RR, Bucksbaum PH, Milchberg H, Darack S, Schumacher D, Geusic ME (1987) Phys Rev Lett 59: 1092

    Article  CAS  Google Scholar 

  32. deBoer MP, Muller HG (1992) Phys Rev Lett 68: 2747

    Article  CAS  Google Scholar 

  33. Gibson GN, Freeman RR, McIlrath TJ (1992) Phys Rev Lett 69: 1904

    Article  CAS  Google Scholar 

  34. Story JG, Duncan DI, Gallagher TF (1993) Phys Rev Lett 70: 3012

    Article  CAS  Google Scholar 

  35. Vrijen RB, Hoogenraad JH, Noordam LD (1993) Phys Rev Lett 70: 3016

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag

About this chapter

Cite this chapter

Gallagher, T.F. (1997). Microwave multiphoton excitation and ionization. In: Atoms and Molecules in Intense Fields. Structure and Bonding, vol 86. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0111351

Download citation

  • DOI: https://doi.org/10.1007/BFb0111351

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61015-1

  • Online ISBN: 978-3-540-49812-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics